





うくで 1/28

# Hadronic Rescattering in Pythia

#### Marius Utheim, Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University

ALICE working group presentation, 1 October

《曰》 《國》 《臣》 《臣》 三臣 …

### Outline

#### Introduction

The rescattering framework

Results for pp collisions

Preliminary results for AA collisions

# Outline

#### Introduction

The rescattering framework

Results for pp collisions

Preliminary results for AA collisions

# Heavy ion research in Lund

Several projects in Lund are trying to explore heavy ion physics without a QGP, to see how well other effects can explain experimental data.

イロト イポト イヨト イヨト

# Heavy ion research in Lund

- Several projects in Lund are trying to explore heavy ion physics without a QGP, to see how well other effects can explain experimental data.
- Rescattering is one such effect. Other effects include string shoving and rope formation.

イロト 不得 とくほと くほと 一日

# Heavy ion research in Lund

- Several projects in Lund are trying to explore heavy ion physics without a QGP, to see how well other effects can explain experimental data.
- Rescattering is one such effect. Other effects include string shoving and rope formation.
- The rescattering framework was released in PYTHIA 8.303, and we are now working on integrating with Angantyr.

・ロ ・ ・ 同 ・ ・ ヨ ・ ・ ヨ ・

# Why rescattering in Pythia?

Other frameworks for hadronic transport already exist (UrQMD, SMASH, ...), so why implement rescattering in PYTHIA?

イロト 不得 トイヨト イヨト ニヨー

# Why rescattering in Pythia?

Other frameworks for hadronic transport already exist (UrQMD, SMASH,  $\dots$ ), so why implement rescattering in PYTHIA?

 Our framework is fully integrated and is trivial to interface with other parts of PYTHIA

・ロ ・ ・ 同 ・ ・ ヨ ・ ・ ヨ ・

# Why rescattering in Pythia?

Other frameworks for hadronic transport already exist (UrQMD, SMASH, ...), so why implement rescattering in PyTHIA?

- Our framework is fully integrated and is trivial to interface with other parts of PYTHIA
- $\blacktriangleright$  Leverages other features of  $\operatorname{Pythia}$  , such as the event record

・ロ ・ ・ 同 ・ ・ ヨ ・ ・ ヨ ・

# Why rescattering in Pythia?

Other frameworks for hadronic transport already exist (UrQMD, SMASH, ...), so why implement rescattering in PYTHIA?

- Our framework is fully integrated and is trivial to interface with other parts of PYTHIA
- $\blacktriangleright$  Leverages other features of  $\operatorname{Pythia}$  , such as the event record
- Some new physics features, such as interactions involving charm and bottom, and open for further extensions

Introduction

The rescattering framework Results for pp collisions Preliminary results for AA collisions

# The Lund string model

Marius Utheim, Torbjörn Sjöstrand Hadronic Rescattering in Pythia

#### The Lund string model



ヘロト 人間 とくほ とくほとう

#### Spacetime picture of the Lund string model



String tension  $\kappa \sim 1 \text{ GeV/fm}$ 

(Ferreres-Solé & Sjöstrand, arXiv:1808.04619)

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

### Outline

#### Introduction

The rescattering framework

Results for pp collisions

Preliminary results for AA collisions

<ロ> <同> <同> <同> < 同> < 同> < □> <

# Rescattering overview



▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → …

# Rescattering overview



# Rescattering overview



# Rescattering overview



# The collision criterion

The probability of an interaction depends on the cross section  $\boldsymbol{\sigma}$  and the impact parameter  $\boldsymbol{b}$ 



The characteristic range of the interaction is  $b_{\rm crit} = \sqrt{\sigma/\pi}$ The cross section  $\sigma$  depends on the particle types and the center-of-mass energy.

#### Low-energy interactions



э

9/28

#### Cross sections



parameterization

(DOI: 10.1103/PhysRevD.98.030001)



Based on UrQMD (arXiv:nucl-th/9803035) and CERN/HERA parameterization (DOI 10.1103/PhysRevD.50.1173)

ъ

・ロト ・四ト ・ヨト ・ヨト

# Cross sections



Based on work by Pelaez, Rodas, Ruiz de Elvira et al. (arXiv:1102.2183, arXiv:1907.13162, arXiv:1602.08404)

・ ロ ト ・ 同 ト ・ 国 ト ・ 国 ト ・

# Tuning

In our framework, we consider rescattering between only two particles at a time. This means that we can have two-to-many interactions, but not many-to-two. Therefore, rescattering increases charged multiplicity.

To compensate for this, we set MultipartonInteractions:pTORef = 2.345 when doing our analyses (default is 2.28).

We have verified that this is not responsible for the results I am about to discuss.

### Outline

#### Introduction

The rescattering framework

Results for pp collisions

Preliminary results for AA collisions

<ロト < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) <

### Rescattering rates



### Rescattering rates

Mean number of interactions per nondiffractive event at 13 TeV

| incoming             | rate  | incoming             | rate  |   |                |        |
|----------------------|-------|----------------------|-------|---|----------------|--------|
| $\pi + \pi$          | 12.63 | K + N                | 0.39  | ] |                |        |
| $\pi + \rho$         | 4.59  | $\rho + \rho$        | 0.38  |   |                |        |
| $\pi + K$            | 3.84  | $\rho + N$           | 0.36  |   |                |        |
| $\pi + N$            | 3.44  | $\rho + \omega/\phi$ | 0.34  |   | process        | rate   |
| $\pi + \omega/\phi$  | 2.08  | $ ho + \eta/\eta'$   | 0.30  |   | resonant       | 17.80  |
| $\pi + \eta/\eta'$   | 1.80  | $\pi + f_0(500)$     | 0.29  |   | elastic        | 14.08  |
| $\pi + \mathbf{K}^*$ | 1.33  | $K + \omega/\phi$    | 0.27  |   | nondiffractive | 6.92   |
| $\pi + \Delta$       | 1.10  | K + K                | 0.26  |   | annihilation   | 0.49   |
| $\rho + K$           | 0.54  | $\pi + \Lambda$      | 0.25  |   | diffractive    | 0.05   |
| $\pi + \Sigma$       | 0.46  | Other                | 3.70  |   |                |        |
| N + N                | 0.46  |                      |       |   |                |        |
| $K + K^*$            | 0.41  | Total                | 39.22 |   |                | ୬୧୯ 1/ |

Marius Utheim, Torbjörn Sjöstrand

Hadronic Rescattering in Pythia

#### Rescattering invariant mass



#### $p_{\perp}$ spectra



(Data from ALICE, arXiv:1504.00024)

< ロ > < 四 > < 回 > < 回 > < 回 > <

# Mean $p_{\perp}$



(Data from ALICE, arXiv:1504.00024, arXiv:1406.3206)

< ロ > < 同 > < 回 > < 回 >

#### $\eta$ spectra



(Data from ATLAS, arXiv:1606.01133, arXiv:1602.01633)

< ロ > < 同 > < 回 > < 回 >

#### Flow

We introduced an artificially strong anisotropy in the x-direction to see if rescattering can produce flow



Under more realistic conditions, we saw no clear signs of flow

< ロ > < 同 > < 回 > < 回 > < □ > <

#### Flow

We introduced an artificially strong anisotropy in the x-direction to see if rescattering can produce flow



Under more realistic conditions, we saw no clear signs of flow  $\Rightarrow$  Rescattering can cause flow in principle, but is not the main source of flow in pp collisions!

< ロ > < 同 > < 回 > < 回 > < □ > <

### Outline

Introduction

The rescattering framework

Results for pp collisions

Preliminary results for AA collisions

# Angantyr



イロト イロト イヨト イヨト

æ

#### Rescattering rates



PbPb events at 3.140 TeV, simple fit  $\propto n^{1.4}$ 

・ロット (雪) (日) (日) (日)

### Generation time



### Rescattering rates

| process  | rate  | fraction |  |
|----------|-------|----------|--|
| resonant | 17.80 | 45.2 %   |  |
| elastic  | 14.08 | 35.8 %   |  |
| nondiff. | 6.92  | 17.6 %   |  |
| ann.     | 0.49  | 1.2 %    |  |
| diff.    | 0.05  | 0.1 %    |  |
| Total    | 39.34 |          |  |

Nondiffractive pp at 13 TeV

| process  | rate    | fraction |  |
|----------|---------|----------|--|
| resonant | 8351.9  | 51.7 %   |  |
| elastic  | 5721.2  | 35.4 %   |  |
| nondiff. | 1999.1  | 12.4 %   |  |
| ann.     | 71.3    | 0.4 %    |  |
| diff.    | 15.2    | 0.1 %    |  |
| Total    | 16158.8 |          |  |

PbPb at 3.140 TeV

イロト イヨト イヨト ・

### Rescattering rates



Nondiffractive pp at 13 TeV



PbPb at 3.140 TeV

# pT spectra



# pT spectra



26/28

#### Longitudinal production time



・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

ъ

# Outlook

We have started doing analyses in Angantyr. One of the next things we want to look at is flow.

イロト イヨト イヨト ・

# Outlook

- We have started doing analyses in Angantyr. One of the next things we want to look at is flow.
- The future of Angantyr will also involve shoving, ropes, and other effects.

イロン 不得 とうせい イロン ニロー

# Outlook

- We have started doing analyses in Angantyr. One of the next things we want to look at is flow.
- The future of Angantyr will also involve shoving, ropes, and other effects.
- When these individual components are done, we will start putting it all together.

< 日 > < 四 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 = > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □