Sector Showers \& Colour Reconnections

- Antenna Showers on Sectorized Phase Spaces
- Sectorized CKKW-L Merging in Pythia 8.306
- QCD-Based Colour Reconnections
- New Close-Packing Model on the Way > More Strangeness

Altmann \& PS, work in progress

Parton Showers $=$ Sums over Radiation Kernels

Most bremsstrahlung is driven by divergent propagators \rightarrow simple universal structure, independent of process details

Amplitudes factorise in singular limits

In collinear limits, we get the DGLAP splitting kernels:

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

In soft limits, we get the dipole (a.k.a eikonal) factors:

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

Normal parton showers partial-fraction one or both of these.
E.g., angular ordering partial-fractions the eikonal into a left and a right half.

Dipole showers also partial-fraction collinear $g \rightarrow g g$ into a left and a right half.

Sum Over Histories

Sum over partial-fractions \Longrightarrow full singularity structure ∇

Means each ($n+1$)-parton phase-space point receives contributions from several possible shower "histories" ~ clusterings.

	Number of Histories for n Branchings								(Stating from a single eqq pair)	
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$			
CS Dipole	2	8	48	384	3840	46080	645120			
Global Antenna	1	2	6	24	120	720	5040			

Fewer partial-fractionings, but still factorial growth

CKKW-L style merging (ind UMEPS, NL3, UNLOPs, ...)
Need to take all contributing shower histories into account.
Bottleneck at high multiplicities (+ high code complexity)

Sector Showers

New in Pythia 8.304: Sectorized Antenna Showers in Vincia

PartonShowers:Model $=2$ Brooks, Preuss \& PS 2003.00702

Sector antennae: no partial-fractioning of any singularities.
Each sector-antenna kernel contains the full soft-eikonal singularity and also the full collinear singularities for each gluon.

Kosower, hep-ph/9710213 hep-ph/0311272; Larkoski \& Peskin 0908.2450 \&
1106.2182; Lopez-Villarejo \& PS 1109.3608; Brooks,
Preuss \& PS 2003.00702 Double-counting avoided by dividing the n-gluon phase space
up into n non-overlapping sectors, inside each of which only one kernel (the most singular one) is allowed to contribute.
VINCIA: Lorentz-invariant def of most singular gluon based on ARIADNE $\mathrm{PT}^{\text {: }}$

$$
p_{\perp j}^{2}=\frac{s_{i j} s_{j k}}{s_{i j k}} \quad \text { with } s_{i j} \equiv 2\left(p_{i} \cdot p_{j}\right) \quad \text { (+ generalisations for heavy-quark emitters) }
$$

No sum over histories!
Factorial \rightarrow constant scaling in number of gluons.
Generalisation to $g \rightarrow q \bar{q} \Longrightarrow$ factorial in number of same-flavour quark pairs.

So What?

As a pure shower, our advert would not be that impressive
"Vincia -- not worse than any other LL* shower !"

Still, it does have better coherence properties than default Pythia showers Especially important for VBF [2003.00702], top production and decays [2003.00702], and also just for hadron collisions in general; anything with colour flow through the process.
(+ No time to discuss ...)

- New "interleaved" treatment of resonance decays + EW Shower [2108.10786]
- Dedicated "exact" treatment of quark mass effects [1108.6172]
- QED multipole showers with full soft interference [2002.04939]
- Reproduces eikonal point-by-point in phase space whereas angular ordering only does so at the azimuthally averaged level.

Main point: achieves LL* with a single history, not a factorial number.
"Maximally bijective" = simple skeleton to build new things on top of. E.g., NNLO matching proof of concept [2108.07133]
$L L^{*}=N L L$ for a few IRC-safe observables, $L L+$ exact (E, p) cons for most; not quite $L L$ for some.

Sectorized CKKW-L Merging in Pythia 8.306

Brooks \& Preuss, 2008.09468

Work ongoing to optimise baseline algorithm
Already now it is mature and ready for serious applications.
Feedback on default tuning and how sector merging works for you is valuable.
Note: Vincia also has dedicated POWHEG hooks; NLO sector merging coming in 2022.
Vincia tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf

Colour Connections: Between which partons do confining potentials form?

High-energy collisions with QCD bremsstrahlung + multi-parton interactions
> final states with very many coloured partons
Who gets confined with whom?
Starting point for MC generators $=$ Leading Colour limit $N_{C} \rightarrow \infty$
\Longrightarrow Probability for any given colour charge to accidentally be same as any other $\rightarrow 0$.
\Longrightarrow Each colour appears only once \& is matched by a unique anticolour.

Example (from upcoming big Pythia 8.3 manual):
$e^{+} e^{-} \rightarrow Z^{0} \rightarrow q \bar{q}+$ parton shower

Naively, corrections suppressed by $1 / N_{C}^{2} \sim 10 \%$

But in pp collisions, multi-parton interactions \Longrightarrow many such systems

Each has probability $\sim 10 \%+$ significant overlaps in phase space \Longrightarrow CR more likely than not

QCD-based CR Model: Rules of the Game

MPI + showers \Longrightarrow partons with LC connections

Idea: stochastically allow ($1 / \mathrm{N}_{\mathrm{C}}{ }^{2}$) colour correlations, using $\mathrm{SU}(3)$ rules:
(1) $3 \otimes \overline{3}=8 \oplus 1$ for uncorrelated colour-anticolour pairs (allows "dipole CR")
(2) $3 \otimes 3=6 \oplus \overline{3}$ for uncorrelated colour-colour pairs (allows "junction CR")

Then choose between which ones to realise confining potentials Smallest measure of "invariant string length" \propto number of hadrons

+ New junction-type CR \Longrightarrow Increased Baryon-to-Meson ratios

Original main goal / constraint: Λ / K

LHCb: also in Bottom

Λ_{b} asymmetry

$$
A=\frac{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)-\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)+\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}
$$

Without junction CR, an important source of low-pt Λ_{b} production is when $a b$ quark combines with the proton beam remnant.
Not possible for $\bar{\Lambda}_{b}$ (no \bar{p} remnant at LHC)
QCD CR adds large amount of low- p_{T} junction Λ_{b} and $\bar{\Lambda}_{b}$, in equal amounts.
Dilutes asymmetry!

Strangeness

QCD-CR is not a mechanism for strangeness enhancement

When we look at "steps in strangeness", we see disagreements

ALICE 2021: also in charm

Similarly, $\Xi / \Lambda, \ldots$

Enter: Close-Packing

"Close Packing" of strings Fischer \& siostrand. 1610.09818

Even with CR, high-multiplicity events still expected to involve multiple overlapping strings.
Interaction energy \Longrightarrow higher effective string tension (similar to "Colour Ropes")
\Longrightarrow strangeness (\& baryons \& $\left\langle p_{\top}\right\rangle$)
Current close-packing model in Pythia only for "thermal" string-breaking model

2021: Monash student J. Altmann extended it to conventional stringbreaking model and began the (complicated) work to extend to junction topologies. Work in progress!

Intended as a simple alternative to rope model.

Summary

The QCD-CR model in Pythia

Physically well-motivated paradigm for CR. Based on stochastic sampling in SU(3)c.

New aspect: Junction Baryons

- Increased baryon-to-meson ratios, especially at low P_{T}
- Dilution of baryon asymmetries (junctions always come with anti junctions) Also expect junction baryons to exhibit quite different baryon-antibaryon correlations : experimental tests? (+ these baryons are probably not in jets?) Too many protons: could they annihilate by rescattering?

It produces some flow (via boosted strings) but not enough / not right kind? Supplement by shoving / repulsion / rescattering?

It does not increase strangeness: Supplement by ropes / close-packing?
Hong work

Originally was "just" a 6-month studentship project (cf laundry list). Impressive new LHC results (esp heavy flavour) > Renewed interest in tying up loose ends.

Extra Slides 1 Loose Ends

Loose Ends: Interplay with Measurements

QCD-CR \Longrightarrow too many protons already at low \mathbf{N}_{ch}

Can Pythia's new hadronic rescattering model help by annihilating away the excess?
Sjöstrand \& Utheim, arXiv:2005.05658
Junction Diquarks: need better constraints (\& more physics?)
ProbQQ1toQQ0join $=\{?, ?, ?, ?\}$ affects eg spin-3/2 vs spin- $1 / 2$ baryons.
Measurement constraints?

+ Multiply-heavy baryons ($\Xi_{c c^{\prime}} \Omega_{c c^{\prime}} \Xi_{b c}, \Omega_{b c^{\prime}} \ldots$): only made by junctions.
Updated QCD-CR tuning would be timely.
(Monash tune was made in 2013, QCD-CR baseline ones in 2015.)
Should include new LHC data and modern PDFs with more strangeness.
Have been procrastinating until close-packing could be included... $\rightarrow 2023$?
String rescattering (repulsion / shoving) \Longrightarrow Flow, p_{T} spectra.
A close-packing version of shoving? Proof of concept: Duncan \& PS arXiv:1912.09639

+ Heavy lons?

Momentum-space formulation assumes everything starts in a point. Not enough for HI.
Increasing efforts to add space-time information - but so far not used in CR / CP models.

Loose Ends: Technical

Diffraction

Current QCD-CR implementation breaks for diffractive events (errors).
\Longrightarrow Probably unreliable for low- N_{ch} INEL. Needs work.

Heavy Quarks

Neither CR nor junction fragmentation were specifically designed/optimised for heavy quarks. E.g.: problems finding "junction rest frame" often worse for heavy quarks.
Measurements at LHC $>$ Dedicated theoretical consideration would be timely.

+ CR effects in onia ($J / \psi, \Upsilon$)?

Causality

ColourReconnection:timeDilationMode = 0, 2, 3: different options for restrictions on CR between systems with relative boosts.
Current options are very crude, probably all are "wrong", to some extent.
(So not enough to just constrain existing options by measurements.)
Needs further thought \& theoretical work.

Extra Slides 2

Colour Reconnections Original Goal: describe observables like < $\mathrm{p}_{\mathrm{T}}>\left(\mathrm{n}_{\mathrm{ch}}\right)$

Both MPI-based (default) and OCDbased CR [1505.01681] reproduce the rising trend of $\langle\mathrm{pT}\rangle\left(\mathrm{N}_{\mathrm{ch}}\right)$

No $\mathbf{C R} \Longrightarrow<\mathrm{p}_{T}>$ approximately the same for all N_{ch} (Many MPI just produce more hadrons, but with ~ same spectra)

Effects of ProbQQ0toQQ1Join

ProbQQ1toQQ0join $=\{?, 0.1,0.1,0.1\} \quad$ (Note: keeping the others at 0.1 was arbitrary, for illustration)

First entry $=$ spin-1 diquark suppression for ud diquarks (uu \& dd have to be spin-1)

Higher values => more spin-3/2 baryons

Effects of ProbOOOtoQO1 Join

ProbQQ1toQQ0join $=\{?, 0.1,0.1,0.1\} \quad$ (Note: keeping the others at 0.1 was arbitrary, for illustration)

First entry $=$ spin-1 diquark suppression for ud diquarks (uu \& dd have to be spin-1)

Everything must decay ...

Not much difference in rates of final long-lived baryons
So, important to reconstruct primaries when possible: more information!

Effects of ProbOQ0toQO1 Join: Strange

ProbQQ1toQQ0join $=\{0.1, ?, 0.1,0.1\} \quad$ (Note: keeping the others at 0.1 was arbitrary, for illustration) Second entry = spin-1 diquark suppression for su \& sd diquarks (ss have to be spin 1)

Effects of ProbQQ0toQQ1Join: Strange

ProbQQ1 toQQ0join $=\{0.1, ?, 0.1,0.1\} \quad$ (Note: keeping the others at 0.1 was arbitrary, for illustration)

 Second entry = spin-1 diquark suppression for su \& sd diquarks (ss have to be spin 1)

Effects of ProbQQ0toQQ1 Join: Strange

ProbQQ1toQQ0join $=\{?, ?, 0.1,0.1\}$

Note: Single-strange/ particles are affected by both first and second entries

Note: primaries = before decays

ProbQQ1toQQ0join $=\{0.1,0.1, ?, 0.1\} \quad$ (Note: keeping the others at 0.1 was arbitrary, for illustration)

 Third entry = spin-1 diquark suppression for (cd, cu, cs) diquarks

Note: primaries = before decays

Re-examations of String Basics? Time dependence?

Cornell potential

Potential $\mathrm{V}(\mathrm{r}$) between static (lattice) and/or steady-state (hadron spectroscopy) colour-anticolour charges:

$$
V(r)=-\frac{a}{r}+\kappa r
$$

Coulomb part String part
Dominates for $r \gtrsim 0.2 \mathrm{fm}$
Lund string model built on the asymptotic large-r linear behaviour
But intrinsically only a statement about the late-time / longdistance / steady-state situation. Deviations at early times?
Coulomb effects in the grey area between shower and hadronization?
Low-r slope > к favours "early" production of quark-antiquark pairs?

+ Pre-steady-state thermal effects from a (rapidly) expanding string?

Toy Model with Time-Dependent String Tension

Model constrained to have same average tension as Pythia's default "Monash Tune"

same average N_{ch} etc main LEP constraints basically unchanged.
But expect different fluctuations / correlations, e.g. with multiplicity N_{ch}.

Thermal string breaks?

Detailed modelling of hyperfine splitting? (New work!)

From Single-Hadron Spectra to Hadron Correlations

The point of MC generators: address more than one hadron at a time!

Further precision non-perturbative aspects: How local is hadronisation?
Baryon-Antibaryon correlations - both OPAL measurements were statisticslimited

+ Strangeness correlations, P_{T}, spin/helicity correlations ("screwiness"?)
+ Bose-Einstein Correlations \& Fermi-Dirac Correlations
Identical baryons (pp, $\Lambda \Lambda$) highly non-local in string picture - puzzle from LEP; correlations across multiple exps \& for both pp and $\Lambda \wedge \rightarrow$ Fermi-Dirac radius $\sim 0.1 \mathrm{fm} \ll r_{p}$

Octet neutralisation? (zero-charge gluon jet
with rapidity gaps) \rightarrow neutrals
Colour reconnections, glueballs, ...

Leading baryons in g jets?
(discriminates between string/cluster models)
High-x baryons

