Hands-On Vincia Tutoria

Will look at

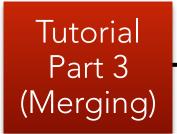
Top Quark Mass •With and without interleaved resonance decays.

Electroweak Showers with Vincia compared to Pythia's Weak Shower

Sector Merging • Example: Weak Boson Fusion at LHC

C. Preuss, P. Skands, R. Verheyen

- Compared to Pythia with and without top coherence hook.
- Cosmic-ray spectra from ultra-heavy Dark Matter decays,


PYTHIA Week Jyväskylä – April 2021

Summary — Vincia as of Pythia 8.304

Defaults for Vincia (partonShowers:Model = 2):

- Sector antenna showers [2003.00702] SimpleShowers Model.
- Interleaved resonance decays [paper in progress]
- for b quarks and heavier (can be extended to c quarks)
- ► Coherent QED radiation [2002.04939] with multipole interference, correct $W \rightarrow W\gamma$ kernels, etc.
- Dedicated default tuning

(Top Mass)

> sector merging, enhanced splittings, ...

(re)implemented. On the todo-list...

```
Tutorial Part 3 (VBF)
          with built-in coherence, in particular for Initial-Final (IF) and
Tutorial Part 1 -> Resonance-Final (RF) colour flows, which are challenging for the
          ON by default in Vincia; available as option in SimpleShowers
        Mass corrections (pseudo-collinear limits & massive phase space) [<u>1108.6172</u>]
          Used similar setup as Monash tune though not at same extensive level
                                                                                    Tutorial Part 2
        + several options, eg for helicity showers, electroweak showers,
          Note, however, that automated uncertainty variations have yet to be
```


Hands-On Vincia Tutorial

Download & unpack tutorial tarball (~100MB) tar -xzf vincia8304-tutorial.tgz cd vincia8304-tutorial/

Configure and compile, with MG5 libraries: ./configure --with-mg5mes make -j8 (or -jN with N = how many threads you have)

While it compiles, open Pythia83-VinciaTute.pdf

Then move to the examples/ directory: cd examples/

- http://skands.physics.monash.edu/slides/files/vincia8304-tutorial.tgz

- (these instructions)

Tutorial Part I: Top Mass

Simple reconstruction of the top quark mass. Will Compare:

- Pythia (default settings)
- Pythia (with top coherence hook)
- Vincia (default settings)
- Vincia (without interleaved resonance decays)

Example program: testTop.cc

- Starting point: setup for default Pythia make testTop ./testTop
- python3 plotTop.py

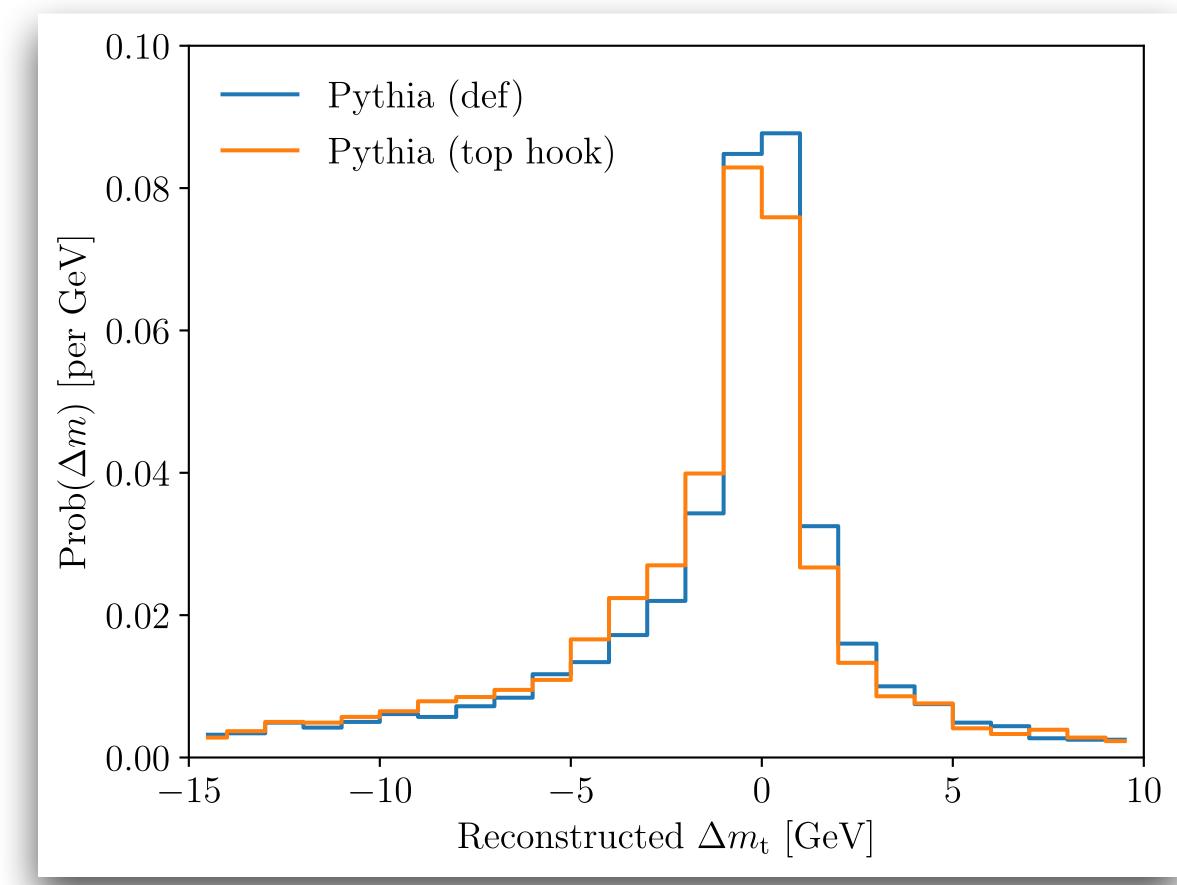
• (Write down the mean of the m_t error, for later comparison)

2) Now enable the top coherence hook

Will give us something more interesting to compare with Vincia.

- ► If you want to look at it, it's in topCoherenceHook.h
- But for this tutorial you can use it as a black box

The top coherence hook needs: TimeShower:recoilToColoured=off


Set the local (main-program) variable

doTopCoherence=true;

(Will create the hook and pass) it to Pythia)

Change the output file: "topHook.dat"

Repeat the run, note down the new mean Δm_t , and edit plotTop.py

Peak position shifts (considerably) to lower masses

3) Now let us see what Vincia says

- To change to Vincia, all you need is: PartonShowers:Model = 2

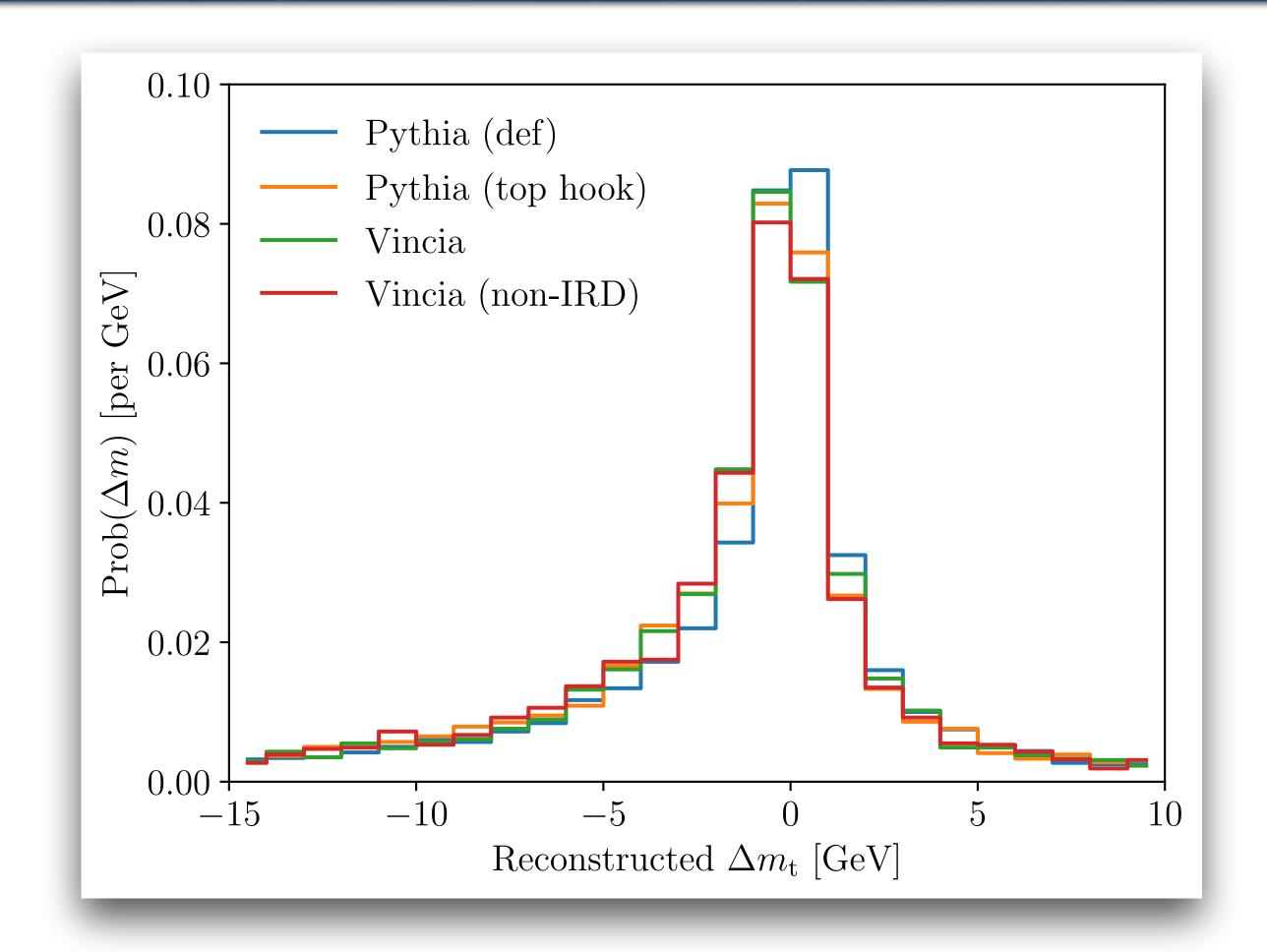
Change the output file name: "vincia.dat"

Repeat the run and note down mean Δm_t .

time to optimise yet; expect improvements in future.)

Also note that interleaved resonance decays are ON by default in Vincia (while they are OFF in Pythia).

- Let's check how things look without IRD in Vincia. Vincia:interleaveResDec = Off
- Change file name to "vincia-nonIRD.dat"
- Rerun, note down mean Δm_t , and replot.


(Note: equivalent for Pythia is TimeShower:interleaveResDec = on/off)

 \blacktriangleright (Vincia then automatically initialises its own default tune, etc.)

• (Apologies: Vincia's current ISR algorithm is quite slow. Did not have

Results

Summary: Top coherence hook makes a big difference

- Pythia + top hook and Vincia are more similar; encouraging.
- InterleavedResDec on/off not a huge effect.
- Not really enough stats in our small runs to say more.

Tutorial Part II: Vincia's ElectroWeak Shower

Exercise: Dark Matter Spectra

We are going to compare Pythia's & Vincia's EW shower with some results from a recent paper: 2007:15001

They compute decay spectra for heavy DM that decays to SM particles \rightarrow Cosmic rays

- Use testVinciaEW.cc to generate a prediction of Pythia's EW shower •
- This generates a bunch of files in the vinciaEWSpectra directory
- Run plotSpectra.py in that same directory to generate plots with the results from 2007:15001

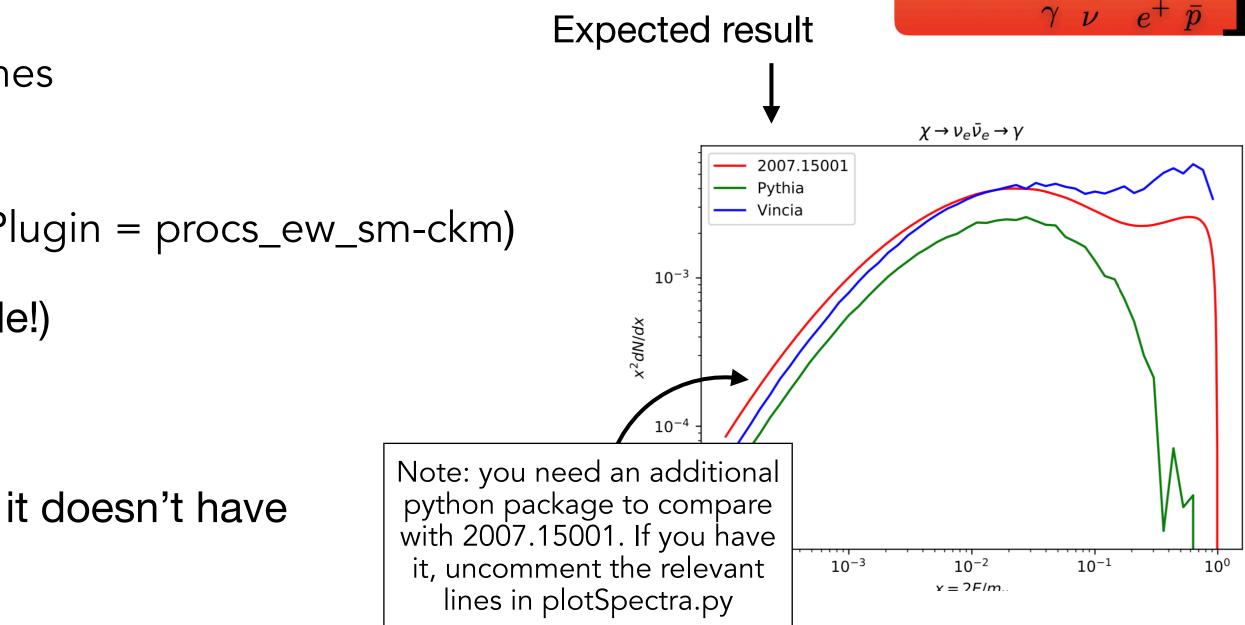
Next, we want to produce similar plots for Vincia's EW shower We need to:

- Have configured with mg5mes: ./configure —with-mg5mes
- Enable Vincia (PartonShowers:model = 2)
- Enable the EW shower (Vincia:ewMode = 3)
- Point Vincia to the correct mg5mes directory (Vincia:mePlugin = procs_ew_sm-ckm)

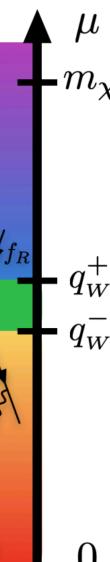
Then just run the main program again (change the output file!) and run the plotting script again

Note that Pythia undercounts most of the spectra because it doesn't have triple-gauge interactions

Dark Matter Spectra from the Electroweak to the Planck Scale


Christian W. Bauer,^{1,2} Nicholas L. Rodd,^{1,2} and Bryan R. Webber³

DGLAP


Matching

Pythia

¹Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA ²Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ³University of Cambridge, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge, UK

Tutorial Part III: Vincia's Sectorised Merging

Vincia comes with its own merging implementation [2008.09468]

- It can be switched on by:

PartonShowers:model = 2Merging:doMerging = on

needed:

- = 0 Vincia:ewMode
- Vincia:doRF = off
- Vincia:kineMapFFsplit = 1

Vincia:pTmaxMatch = 1

only kinematic maps are used for which the inverse is

Designed for efficient multi-jet merging especially at high multiplicities. This is facilitated by the use of sector showers, which bypass the factorial growth of the number of histories.

To ensure consistency in the merging, a few more settings are

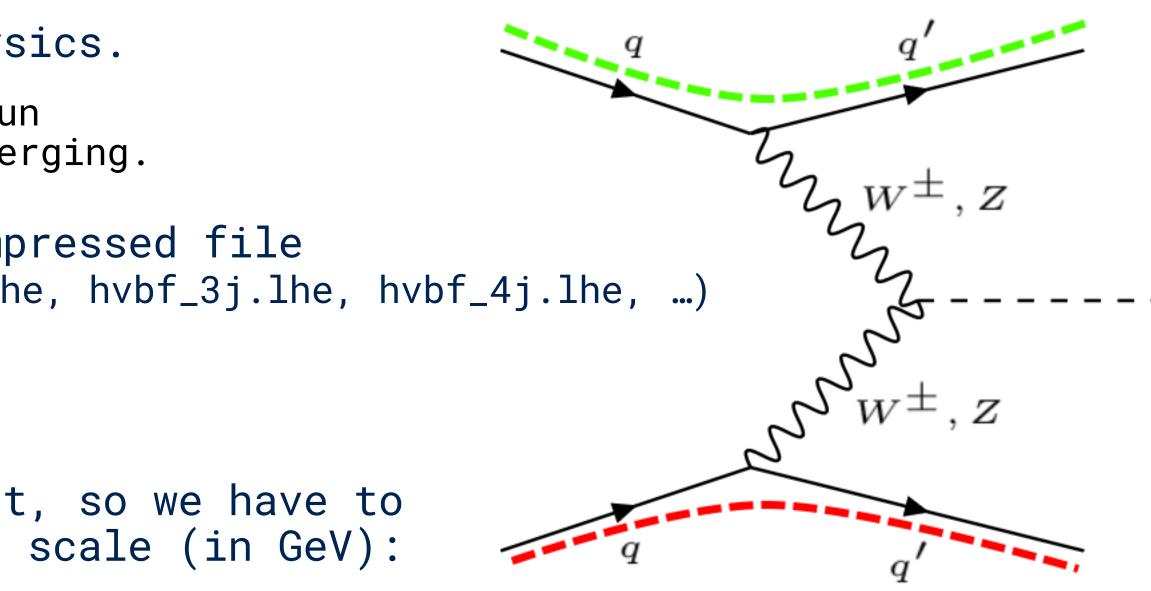
These switch off EW/QED & resonance-final (RF) showers, ensure implemented, and showers are started at the factorisation scale.

Hands-on: CKKW-L Merging in VBF with Vincia

This tutorial is less focussed on physics.

Main aim is to show how to get it to run and highlight differences to default merging.

The examples directory contains a compressed file containing five event files (hvbf_2j.lhe, hvbf_3j.lhe, hvbf_4j.lhe, …)


Before you start, unpack these with tar -xzf testMerging-samples.tgz

The events are regularised by a kT cut, so we have to enable kT-merging and set the merging scale (in GeV): Merging:doKTMerging = on Merging:TMS = 20.

- Defining the Born process again works slightly differently: Merging:Process = { p p > h0 j j } Vincia:MergeVBF = on
 - topology (two initial-final quark lines) and aborts those which cannot.

Lastly, we set the number of additional jets in same way as for default merging.

▶ E.g. for 1 additional jet: Merging:nJetMax = 1


```
• (Different to default merging, both doMerging and doKTMerging should be ON here)
```

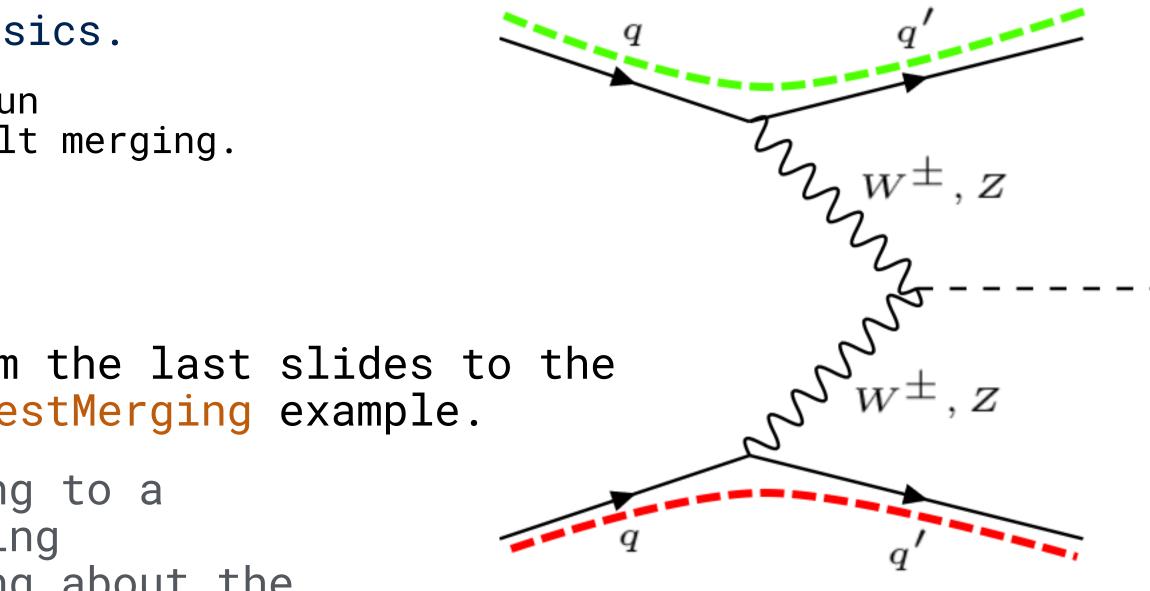
▶ The flag ensures that the colour flow of the input event can be mapped to the VBF

Hands-on: CKKW-L Merging in VBF with Vincia

This tutorial is less focussed on physics.

► Main aim is to show how to get it to run and highlight differences to the default merging.

Exercises


Add the Vincia merging settings from the last slides to the testMerging.cmnd file and run the testMerging example.

After each sub-run (corresponding to a certain jet multiplicity), merging statistics are printed, informing about the number of vetoed events.

Change the input file so that four-jet merging is performed, using the hvbf_4j.lhe, hvbf_5j.lhe, and hvbf_6j.lhe files.

How does the CPU time of each sub-run change with increasing jet multiplicity?

Note: During the preparation of this tutorial, we discovered an inconsistency related to the treatment of the Vincia:MergeVBF flag. While this flag enables a check whether the input event can be mapped to a VBF process, non-VBF histories are allowed during the clustering steps, resulting in a small number of incomplete histories. (Visible e.g. in the number of vetoed events with lower multiplicity than the current one in the merging statistics.)

In Pythia

• Effective value of α_{s} in showers is governed by running orders and CMW on/off.

In Vincia

- the PDG value if you like, done by default)
- Effective coupling in showers instead controlled by renormalisation-scale prefactors:
- parm parm parm parm parm
- near the IR boundary.

```
TimeShower:alphaSvalue and SpaceShower:alphaSvalue + corresponding
```

```
Instead there is a single Vincia:alphaSvalue (which you can set to
```

```
Vincia:renormMultFacEmitF (default = 0.66; minimum = 0.1; maximum = 10.0)
Vincia:renormMultFacSplitF (default = 0.8; minimum = 0.1; maximum = 10.0)
Vincia:renormMultFacEmitl (default = 0.66; minimum = 0.1; maximum = 10.0)
Vincia:renormMultFacSplit (default = 0.5; minimum = 0.1; maximum = 10.0)
Vincia:renormMultFacConvl (default = 0.5; minimum = 0.1; maximum = 10.0)
```

► Also choose loop order (default 2), whether to translate to the CMW scheme (default ON), and some options to regulate the coupling

