Peter Skands (Monash University)

Radiation. recoil. and finite-width effects In top quark decays in PYTHIA

Ratio to AP kernel

LHC Top WG meeting Nov 2022

The MC "truth" top-quark mass distribution in PYTHIA

(skewed by PDF effects: more incoming partons at lower invariant masses.) NB: if your hard tops are coming from elsewhere (MG5, PowHeg, ...) this distribution may be different

Radiative Corrections

Bremsstrahlung

Colour flow determines coherent (soft-eikonal) radiation patterns

→ VINCIA shower model

Top decay: unique coherent "resonance-final" antenna patterns and recoils

Brooks, Skands, 2019

Radiative Corrections

PYTHIA's default showers are anchored in collinear (DGLAP) limits

- **Separate** initial-state, final-state, and resonance-decay showers.
- > Coherence for soft radiation across these boundaries is not automatic No notion of **resonance-final** recoils; must use **final-final** ones instead.

Coherence in Top Decay

Phase space: limit set by $m_t - m_W$ in both cases **Recoils:** Vincia RF recoils to $t - b = W \leftrightarrow$ Pythia FF recoils to W = same. **RF pattern suppressed at wide angles** compared to DGLAP (but Pythia has **MEC**)

Coherence in Top Decay: 2nd emission

Second emission: big differences

Not controlled by PowHeg, nor by Pythia's MECs.

Not as important as 1st. Still highly significant if goal is per-mille precision on m_t

tg RF antenna: Phase space & recoils set by: t - g = b + WCollective recoil

g - t dipole treated as g - b: Phase space & recoils set by **b** Affects b fragmentation

RecoilToTop

PYTHIA allows two different coherence/recoil options + recently made a dedicated UserHook "recoilToTop" for use with recToCol = off Theoretically the least bad option (in absence of RF)? Needs validations & feedback.

Finite-width effects

Physically, short-lived fluctuations do not have time to form long-wavelength emissions In parton showers, this is reflected in the principle of strong ordering However, **resonance decays** are normally treated sequentially, factorised. No strong ordering.

Expect initial-final interference effects at scales below Γ_{t}

Uniquely treated in VINCIA via "interleaved resonance decays"

Interleaved evolution with resonance decays

Brooks, Skands, Verheyen 2022

Some consequences

Brooks, Skands, Verheyen 2022

Summary

		Coher $pp \rightarrow t\bar{t}$ shower	ence $t \rightarrow bW$ shower	Mass effects for <i>b</i> (and <i>t</i>)	Fini effe
		~ Approximate dipole treatment	Sest is recoilToTop?	Via iterated MECs	BW + 5
	VINICIA	Coherent Initial-Final and R + global (coherent) res (IF and FF recoils still lo	(√) esonance-Final antennae onance-final recoils. cal → ongoing work.)	Massive eikonals & exact massive antenna phase spaces	BW + Ir (Still mis

