String Junctions at the Large Hadron Collider

Peter Skands (University of Oxford \& Monash University)
Work done with T. Sjöstrand, J Christiansen, and J. Altmann

1. Confinement in High-Energy Collisions
2. Basics of String Hadronization
3. String Junctions
4. String Junctions at the LHC (?)
the university of
WARWICK

String Junctions at the Large Hadron Collider

Peter Skands (University of Oxford \& Monash University)
Work done with T. Sjöstrand, J Christiansen, and J. Altmann

1. Confinement in High-Energy Collisions
2. Basics of String Hadronization
3. String Junctions
4. String Junctions at the LHC (?)

The Problem of Confinement - in High-Energy Collisions

Consider a "hard" process

"Hard" = large momentum transfers Example: $g g \rightarrow t \bar{t}$ Here, $Q^{2} \sim m_{t}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}$

Accelerated charges (OED \& QCD)

\rightarrow Bremsstrahlung (QED \& QCD)
\rightarrow Last seminar (Oct 19)
At wavelengths $\sim r_{\text {proton }} \sim 1 / \Lambda_{\mathrm{QCD}}$ Some dynamical process must ensure quarks and gluons become confined inside hadrons:
Hadronization
What do we know about that?

From Partons to Pions

Consider a parton emerging from a hard scattering (or decay) process

Hard:
Large momentum transfer

$$
Q_{\text {Hard }} \gg 1 \mathrm{GeV}
$$

It showers
(bremsstrahlung)

It ends up at a low effective factorization scale $Q_{\text {Hadronization }} \sim m_{\rho} \sim 1 \mathrm{GeV}$

How about I just call it a hadron?
\rightarrow "Local Parton-Hadron Duality"

Local Parton Hadron Duality \leftrightarrow Independent Fragmentation

Local
Parton
Hadron
Duality

Fast parton

$Q_{\text {Factorization }}$

Hadrons
π
π

π

Momentum fractions $\{x\}$

$$
F_{\pi / q}\left(Q_{F}, x\right)
$$

Fragmentation Function

Late 70s MC models: Independent Fragmentation

E.g., PYTHIA (then called JETSET) anno 1978

```
LU TP 78-18 November, 1978
A Monte Carlo Program for Quark Jet Generation
T. Sjöstrand, B. Söderberg
A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

ROROUTINE JETGEN(N
COMMON /JET/ K (100,2), P(100:5) , EPEG, WFIN, IFLBEG COMMON PAR
IFLSGN \(=(10-\) IFLBEG \() / 5\)
\(W=2\). *EEEG

\section*{\(I=0\)}

C I FLAVOUR AND PT FOR FIRST QUARK
IFLI=IABS(IFLBEG)
PT1=SIGMA*SQRT (-ALOG\{RANF (O)))
PHI1=6.2832*RANF ( 0 )
Px1=PT1*COS(PHI1)
PYI=PT1世SIN(PHI1)
\(100 \mathrm{I}=\mathrm{I}+1\)
C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK
IFL \(2=1+I N T\) (RANF (D)/PUD)
PTZ=SIGMA*SQRT (-ALOG(RANF (O) )
PHI \(2=6.2832 *\) RANF ( 0 )
\(\mathrm{P} \times 2=\mathrm{PT} 2 * \operatorname{COS}(\mathrm{PHI} 2)\)
PYZ=PTZ*SIN(PHIZ) ADDED ANO FLAVOUR MIXED
c 3 MESON FORMEO, SPIN ADDES ANO FLANGS
KGPIN=INT (PGI +RANF(O))

IF (K (I, 1) LE.6) GOTO 110
TMIX = RANF ( 0 )
\(K M=K(I: 1)-3+3 * I S P I N\)
\(K\{I, 2)=8+9 * 1 S P I N+I N T(T M I X+\) CMIX (KM, 1) \()+\) INT (TMIX + CMIX \((K M, 2)\)
4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS
\(110 \mathrm{P}(\mathrm{I}, 5)=\mathrm{PMAS}(\mathrm{K}(1 ; 2))\)
\(P(I, 1)=P X_{1}+P X_{2}\)
\(P(1,2)=P Y 1+P Y_{2}\)
PMTS \(=P(1,1) * * 2+P(1,2) * * 2+P(1,5) * 2\)
5 RANDOM CHOICE OF \(X=(E+P Z) M E S O N\) (E+PZAVAILABLE GIVES E ANO PZ \(\mathrm{X}=\mathrm{RANF}(0)\)
IF (RANF ( 0\() . L T, C X 2) \quad X=1,-X *(1, / 3\).
\(P(I, B)=(X * W-P M T S /(X * W)) / 2\).
P\{I,4) \(=(X * W+P M T S\) CHAIN INTO STABLE PARTICLES
6 IF UNSTABLE
 FF(IPD IT. ANO.I.LE. 96 ) GOTO 120
\(\rightarrow 7\) FLAVOUR ANO PT OF GUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
\(I F L 1=1 F L 2\)
\(Y F L 1=1 F L 2\)
\(P \times 1=-P \times 2\)
PY1 \(=-P Y_{2}\)
C 8 IF ENOUGH E+PZ LEFT, GO TO 2 \(W=(1,-x) * W\)
IF (W.GT.WFIN.AND.I.LE.95) GOTO 100
\(\mathrm{N}=\mathrm{I}\)
RETUR
END

\section*{Colour Neutralisation}

As a physical model, however, LPHD is a not a good starting point
The point of confinement is that partons are coloured.
A physical hadronization model
Should involve at least two partons, with opposite color charges

A strong confining field emerges between the two when their separation \(\gtrsim 1 \mathrm{fm}\)


\section*{Two Partons: Linear Confinement}

In lattice QCD, one can compute the potential energy of a colour-singlet \(q \bar{q}\) state, as a function of the distance, \(r\), between the \(q\) and \(\bar{q}\)

"Cornell Potential" fit: \(V(r)=-\frac{a}{r}+\kappa r \quad\) with \(\kappa \sim 1 \mathrm{GeV} / \mathrm{fm} \quad(\rightarrow\) could lift a 16-ton truck)

\section*{From Partons to Strings}

\section*{Motivates a model:}

Let colour field collapse into a narrow flux tube of uniform energy density
\(\mathrm{k} \sim 1 \mathrm{GeV} / \mathrm{fm}\)
Limit \(\rightarrow\) Relativistic 1+1 dimensional worldsheet


\section*{Map:}

Quarks \(\rightarrow\) String Endpoints
Gluons \(\rightarrow\) Transverse Excitations (kinks)

\section*{Physics then in terms of string worldsheet evolving in spacetime}

Nambu-Goto action \(\Longrightarrow\) Area Law.


\section*{String Breaking}

In "unquenched" QCD
\(g \rightarrow q \bar{q} \Longrightarrow\) The strings will "break"
Non-perturbative so can't use \(P_{g \rightarrow q \bar{q}}(z)\)
Model: Schwinger mechanism


\section*{Schwinger Effect}

Non-perturbative creation of \(\mathrm{e}^{+} \mathrm{e}^{-}\)pairs in a strong external Electric field

Probability from Tunneling Factor
\[
\mathcal{P} \propto \exp \left(\frac{-m^{2}-p_{\perp}^{2}}{\kappa / \pi}\right)
\]
( \(\kappa\) is the string tension equivalent)
\(\rightarrow\) Gaussian suppression of high \(m_{\perp}=\sqrt{m_{q}^{2}+p_{\perp}^{2}}\)

Assume probability of string break constant per unit world-sheet area

\section*{Schwinger Case: the String Fragmentation Function}

Schwinger \(\Longrightarrow\) Gaussian \(p_{\perp}\) spectrum (transverse to string axis) \& Prob(d:u:s) \(\approx 1: 1: 0.2\)
The meson \(M\) takes a fraction \(z\) of the quark momentum,
Probability distribution in \(z \in[0,1]\), is parametrised by the Fragmentation Function, \(f\left(z, Q_{\mathrm{HAD}}^{2}\right)\)


\section*{Iterative String Breaks}

\section*{Causality \(\rightarrow\) May iterate from outside-in}

Note: using light-cone coordinates: \(p_{+}=E+p_{z}\)


On average, expect energy of \(n\)th "rank" hadron \(\sim E_{n} \sim<z>n E_{0}\)

\section*{(Note on the Length of Strings)}

\section*{In Spacetime:}

String tension \(\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow\) a \(10-\mathrm{GeV}\) quark can travel 10 fm before all its kinetic energy is transformed to potential energy in the string. Then it must start moving the other way. ( \(\rightarrow\) "yo-yo" model of mesons. Note: string breaks \(\rightarrow\) several mesons)

\section*{The MC implementation is formulated in momentum space}

Lightcone momenta \(p_{ \pm}=E \pm p_{z}\) along string axis
Rapidity (along string axis) and \(p_{\perp}\) transverse to it
\[
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right) \quad y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right) \quad \underset{\substack{\text { Increasing } E_{q} \rightarrow \text { logarithmic } \\ \text { growth in rapidity range }}}{\substack{\text { a }}}
\]

\section*{Particle Production:}

Scaling in \(z \Longrightarrow\) flat in rapidity (Iong, boost invariance)

"Lightcone scaling" \(\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim\) Poissonian multiplicity distribution

\section*{Gluon Kinks: The Signature Feature of the Lund Model}

Gluons are connected to two string pieces


Important for discriminating new-physics signals
Decays to quarks vs decays to gluons,
vs composition of background and bremsstrahlung combinatorics


Each quark connected to one string piece Expect factor \(\sim 2 \sim C_{A} / C_{F}\) more particles in gluon jets

See also
Larkoski et al., JHEP 1411 (2014) 129
Thaler et al., Les Houches, arXiv:1605.04692

\section*{Other String Topologies}

\section*{Open Strings}

\(q \bar{q}\) strings (with gluon kinks)
\[
\begin{gathered}
\text { E.g., } Z \rightarrow q \bar{q}+\text { shower } \\
H \rightarrow b \bar{b}+\text { shower }
\end{gathered}
\]

\section*{SU(3) String Junction}

\section*{Closed Strings}


Gluon rings

> E.g., \(H \rightarrow g g+\) shower
> \(\Upsilon \rightarrow g g g+\) shower

Open strings with N endpoints
E.g., Baryon-Number violating neutralino decay \(\chi^{0} \rightarrow q q q+\) shower

\section*{Fragmentation of String Junction Systems}

\section*{Assume vortex-line string picture still OK}

Which topology? Y, \(\Delta, ~, ~, ~ T, ~ . . . ? ~ ? ~\)
 Fun (but a bit of a long shot ...)
(Junction strings can also have kinks):


Would love to tell you this has been seen at LHC But then you probably wouldn't be hearing about it from me However, string junctions may have been seen!

\section*{Fragmentation of String Junctions}

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger \(p_{T}\), etc)
Exploit causality again to fragment outwards-in, from endpoints towards junction
First Stage: 2 least energetic legs \(\left(q_{A 0}, q_{B 0}\right)\) fragmented first
When little energy left, remains \(\left(q_{A 2}, q_{B 3}\right)\) collapsed to "diquark" \(\left(q q_{A B}\right)\)
Second Stage: Remaining \(q q_{A B}-q_{C 0}\) string fragmented as usual. Leading hadron on \(q q_{A B}\) end \(=\) junction baryon.


\section*{Predicting the Junction Baryon Spectrum}

\section*{The Junction Baryon = smoking gun of String Junctions}

Predicting the movement of the string junction is crucial!
To make solid predictions for Junction Baryon spectra, we use a trick: Sjistrand \& Ps, Nucl.Phys. 6 69 2003 243
Find the Lorentz frame in which the string junction is at rest (JRF)
Inverse boost (+ \(\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)\) kicks) \(\Longrightarrow\) junction baryon spectrum
Junction \(=\) Topological Feature of Confinement Field

\[
V(r)=\kappa r
\]
\(\Longrightarrow\) each "leg" (string piece) acts on the other two with constant force
\[
\vec{F}=\kappa \vec{e}_{r}
\]
\(\Longrightarrow\) In "Mercedes Frame", the angle is \(120^{\circ}\) between the legs
Massless legs: exact solution. Mercedes Frame = Junction Rest Frame (JRF).
Massive legs (eg heavy flavours or ones with lots of kinks!) => Iterative algorithm.
But org algorithm often broke down (failed to converge) for "soft legs"

\section*{Does a Boost to the Mercedes Frame Always Exist?}

\section*{Consider the following kinematic case}

In the rest frame of one of the partons, and the angle between the other two is greater than 120 degrees (not considered in org algorithmic implementation)


\section*{The case of a heavy slow endpoint: Pearl on a String}

\section*{String Motion: Soft Massless Case}


Similar to a mesonic string with a gluon kink

\section*{String Motion: Slow Massive Case}

Example of pearl-on-a-string viewed in the Ariadne frame of the green quark


\section*{The case of a heavy slow endpoint: Pearl on a String}

The junction gets "stuck" to the soft quark, which we call a pearl-on-astring
More likely to occur for junctions with heavy flavour endpoints

For a string junction to make a heavy baryon, the junction leg with the heavy quark can't "break" (i.e. a "soft" junction leg) = pearl-on-a-string!


String Motion: Slow Massive Case


\section*{Confront with Measurements}

Since 2020, ALICE (and LHCb) have been reporting large (factor-10) enhancements in heavy-flavour baryon-to-meson ratios at low \(\mathrm{p}_{\mathrm{T}}\) !






Very exciting!

\section*{Confront with Measurements: Strangeness}

Since 2020, ALICE (and LHCb) have been reporting large (factor-10) enhancements in heavy-flavour baryon-to-meson ratios at low \(\mathrm{p}_{\mathrm{T}}\) !


\section*{Strangeness Enhancement}

\section*{Clear observations of enhancements of strange baryons with multiplicity} Also among light-flavour hadrons


\section*{What we think is driving this: Multiple Parton-Parton Interactions}

Beam particles at LHC = protons: composite; lots of quarks and gluons inside As they pass through each other, they present a beam of partons to each other

\section*{- Multiple parton-parton interactions. Explicit MC models around since 80s}

Lots of colour exchanges \(\Longrightarrow\) lots of coloured partons scattered into the final states


Counting number of fundamental and antifundamental flux lines at central rapidity in pp collisions (according to PYTHIA)

Confining fields may be reaching much higher effective representations than simple quark-antiquark (3) ones.

Two approaches in PYTHIA:
1) Colour Ropes (Lund)
2) Close-Packing (Monash/Oxford)

\section*{Work in Progress: Strangeness Enhancement from Close-Packing}

Idea: each string exists in an effective background produced by the others
Close-packing


Dense string environments
\(\rightarrow\) Casimir scaling of effective string tension
\(\rightarrow\) Higher probability of strange quarks


Strange Junctions


String breaks
vs.
Results in strangeness enhancemen focused in baryon sector

String tension could be different from the vacuum case compared to near a junction


\section*{Summary / Outlook}

\section*{Perturbative QCD has been revolutionised from 80s}

\author{
Culminating now/soon in \\ NNLO+NNLL matched MC models for colliders
}

\section*{Lepton Photon 2023 @Lp2023monash • Jul 18}

Strange strings are happening!! \(\mathscr{\circ}\) -
Check outstring theorist Javira Altmann's poster on "Beyond the Leading Dipole Approxermation" discussing the colourful strings which stitch together atoms!! \& 1

Follow her Insta @javiraaltman and her @PPMonashUni (or @UniofOxford II)

Non-perturbative QCD more quiet
(Apart from lattice), few developments, driven by a few research groups
String Junctions
Colour Ropes/Close-Packing
String Shoving/Repulsion
Thermal Effects
Interplay with pQCD calculations?
Scope for input and new ideas perhaps from unexpected areas?


Extra Slides

\section*{(Or could it be Thermal?)}

\section*{An Alternative Analogy ... ?}
\(g \rightarrow q \bar{q} \Longrightarrow\) The strings will "break"
Non-perturbative so can't use \(P_{g \rightarrow q \bar{q}}(z)\)
Pair creation near a black hole?

\section*{Hawking Radiation}

Non-perturbative creation of radiation quanta in a strong gravitational field

\(\rightarrow\) Exponential suppression of high \(m_{\perp}=\sqrt{m_{q}^{2}+p_{\perp}^{2}}\)
Fischer \& Sjöstrand JHEP 01 (2017) 140
Or a "hot string" that cools down?

\section*{Charm Baryons}

Since 2020, ALICE (and LHCb) have been reporting large (factor-10) enhancements in heavy-flavour baryon-to-meson ratios at low \(\mathrm{p}_{\mathrm{T}}\) !


\section*{Beauty Baryons}



\section*{The Charmed Strange Baryons}



\section*{2) QCD Colour Reconnections}```

