Heavy Flavour Hadronisation in Pythia

Peter Skands (Monash University)

- **1.** Heavy-Flavour Hadronisation in the Lund Model
- **2.** Constraints
- 3. From ee to pp
- 4. New Theory Models in Pythia
- **5.** Some Suggestions for New Measurements
- 6. Multiply heavy hadrons?

Heavy-Flavour Hadronization in pp & HI Collisions, CERN, March 2020

Reminder: Fragmentation Models

Hard process (e.g., dijets) > hard factorisation scale $Q_{UV} \sim p_{Tjet}$ Parton Showers: perturbative bremsstrahlung down to $Q_{IR} \sim 1 \text{ GeV}$ Hadronisation: confinement (+ hadron decays) at $Q_{HAD} \sim Q_{IR}$

Spectrum = combination of α_s choice & non-perturbative parameters

Flavour Composition in the Lund Model

Starting point: **isolated** string in 1+1 dimensions

Tension $\kappa \sim 1 \text{ GeV/fm} \sim 0.2 \text{ GeV}^2$

String breaks by Schwinger mechanism

- → Suppression of strange $\exp\left(-\frac{m_q^2 + p_{\perp}^2}{\kappa}\right)$ quarks (and diquarks)
- → StringFlav:probStoUD = 0.217

+ Spin-splitting in hadron multiplets V/P \neq 3

 $\rho/\pi \ StringFlav:mesonUDvector = 0.50 \qquad D^*/D \ StringFlav:mesonCvector = 0.88 \\ K^*/K \ StringFlav:mesonSvector = 0.55 \qquad B^*/B \ StringFlav:mesonBvector = 2.2 \\ R^*/B \ StringFlav:mesonBvector = 2.2 \\ R^$

Note: model parameters are for **primary** hadrons ≠ measured ratios (feed-down)

Flavour Composition in the Lund Model

Starting point: **isolated** string in 1+1 dimensions

Tension $\kappa \sim 1 \text{ GeV/fm} \sim 0.2 \text{ GeV}^2$

String breaks by Schwinger mechanism

- → Suppression of strange $\exp\left(-\frac{m_q^2 + p_{\perp}^2}{\kappa}\right)$ quarks (and diquarks)
- → StringFlav:probStoUD = 0.217

+ Spin-splitting in hadron multiplets V/P \neq 3

D*/D StringFlav:mesonCvector = 0.88 ρ/π StringFlav:mesonUDvector = 0.50 K*/K StringFlav:mesonSvector = 0.55 **B***/**B** StringFlav:mesonBvector = 2.2

Note: model parameters are for **primary** hadrons \neq measured ratios (feed-down)

arXiv:1404.5630 **Rookie Mistake:** for D*/D in the Monash tune • I took the D and D* rates from separate sources > wrong ratio Should be higher ~ 1.25 - 1.5 to agree with measured values

Thanks to D. Bardhan for pointing to this

Heavy-Flavour Endpoint Quarks

Same starting point as for massless endpoints

Tension **κ** ~ 1 GeV/fm ~ 0.2 GeV² String breaks by Schwinger mechanism

exp

→ Suppression of strange quarks (and diquarks)

$$\left(-\frac{m_q^2 + p_\perp^2}{\kappa}\right)$$

StringFlav:probStoUD = 0.217

Same parameters govern D_s/D , B_s/B , Λ_c/D , $\Lambda_b/B \rightarrow$ Interesting to check if D_s/D , B_s/B affected in same way in same environments where we see strangeness enhancements in light-quark sector: **multiplicity** dependence

Massive endpoints have v < c **→** smaller string space-time area:

→ Modified ("Lund-Bowler") FF:

(Note: Peterson etc strictly speaking incompatible with causality in string picture)

Constraints : B Spectra

Main constraint: x_B spectra of weakly decaying B hadrons in Z decays

for details see arXiv:1404.5630 (section 2.3)

+ B-tagged Event Shapes & Jet Rates

IR safe: sensitive to α_s and b mass effects in shower + hadronisation

LHC: Top Decays > In-situ controlled B-Jet Sample?

Yesterday: 25th anniversary of the top quark discovery

t→bW provides a clean high-statistics reference sample, with a welldefined initial b-quark energy (in top CM) very similar to Z → bb.

Compare B FF(x) and B hadron flavour ratios to those for inclusive b-jets, incl. any dependence on UE level (measured away from the top jets) Note: finite top width → "collective effects" may be suppressed in top

Peter Skands

("early" vs "late" resonance decays)

Some Comments on b fragmentation "tuning"

Note: Monash uses "large" TimeShower:alphaSvalue = 0.1365

Regarded at least in part as making up for **NLO** K-factor for $ee \rightarrow 3 jets$ (baseline Pythia only accurate to LO for 3 jets).

Consistent with 3-flavour $\Lambda_{\text{QCD}} \sim 0.35$ GeV (since we use 1-loop running)

Not guaranteed to be universal.

LHC studies tend to prefer lower effective values of α_{s}

E.g., A14 uses TimeShower:alphaSvalue = 0.129 (could be reinterpreted via CMW to MSbar alphaS(mZ) ~ 0.12 so consistent with world average.)

(but I would then also change to 2-loop running to preserve Λ_{QCD} value)

E.g., a lower $\alpha_s \rightarrow less$ perturbative radiation \rightarrow harder $x_b(Q_{IR})$ \rightarrow Would need to retune non-perturbative parameters (e.g., r_b) at LEP Problem: most LEP measurements are inclusive (including 3-jet events)

→ Would need 3-jet NLO merging to ensure correct 3-jet admixture.

Constraints : Charm

No "C-tagged" data from LEP (that I am aware of)

Monash tune only used a single D* spectrum (ALEPH) \rightarrow r_c

From ee to pp: multiple parton interactions (MPI)

 \rightarrow incoherent addition of colours

1 or 2 strings per MPI

Simple, clean, factorized picture ...

N_{ch} density grows linearly with N_{MPI}

WRONG!

Anticipated already in first Pythia MPI model (Sjöstrand & van Zijl, 1987)

"CR" parameter = probability for MPI to just generate "kinks" on hard-process colour structure, rather than new strings of their own

Tevatron <N_{ch}> and <Σp_T> in "Transverse" UE region Required ~ 100% CR (*Rick Field*, "Tune A", 2002)

➤ Not a small effect, then ...

+ Many new measurements and discoveries from LHC (& RHIC) (e.g., CMS ridge, ALICE strangeness vs N_{ch}, ...)

The MPI are all within a proton radius of each other (in pp)

Fertile ground for model building

Brief Summary of "New" Theory Models in Pythia

OCD-inspired CR ColourReconnection:mode = 1 Christiansen, Skands, JHEP 1508 (2015) 003

Stochastically sample subleading-N_C connections according to **SU(3) weights** and choose among possibilities (incl colour- ϵ ones) based on **string-length minimisation**.

> some flow effects & additional baryons (incl multiply-heavy); no extra strangeness

Ropes & Shoving Bierlich, Gustafson, Lönnblad, Tarasov, JHEP 1503 (2015) 148 Bierlich, Gustafson, Lönnblad, PLB 779 (2018) 58
Ropes: allow QCD charges to combine into higher representations: 6, 10, 15, 21, 28, ... with higher string tensions (Casimir scaling) ➤ more strangeness & more baryons
Shoving: explicit dynamical model of repulsion between different strings/ropes ➤ flow

Thermodynamical String fragmentation Fischer, Sjöstrand, JHEP 1701 (2017) 140

+ Much ongoing work ...

Hadronic Rescattering (Sjöstrand+Utheim)

HI extensions (Angantyr, PISTA) & extensions with UrQMD (Bierlich et al.)

 \bigcirc

Interacting Strings: momentum-space alternative to ropes+shoving (Duncan+Skands)

Back to basics: fragmentation of a single string: early / out-of-equilibrium, and thermal effects. **Time-varying string tension** out soon. + other variants? E.g., **UCLA model**?

Some Suggestions for New Measurements

Want to disentangle $< p_T >$, < strangeness >, < baryons >, $< N_{ch} >$ $< \zeta >$ (varsigma) $< \mathcal{B} >$

E.g., CR and "flow" increase $< p_T >$ without (directly) affecting $< \zeta >$ "Baryonic" CR can increase $< \mathscr{B} >$

Higher tensions/temperatures: correlated $< p_T >$, $< \zeta >$, and $< \mathscr{B} >$

Some Simple Questions:

How **local** are the $\langle \boldsymbol{\zeta} \rangle$ and $\langle \boldsymbol{\mathscr{B}} \rangle$ enhancement mechanisms?

How far in phase space is nearest anti-strange / anti-baryon?

For different values of N_{ch} density, p_{TB} or p_T (b-jet), and ζ density

E.g., heavy-flavour tag, say $B_s > know$ the endpoint flavour > look for nearest anti-strange quark.

What is the distance in p_T ? in rapidity (along z / along b-jet)? in ΔR ?

How do the HF fractions depend on **event multiplicity?**

Heavy-Elavour Baryons

 \overline{q}

q

\rightarrow						
\overline{q} \overline{q} \overline{q} \overline{q}	Christ	Christiansen, Skands, JHEP 1508 (2015) 003				
	ColourRecor	nection:	mode = 1	= 0		
Allows "junction reconnections" e.a.	_	Particle	$N_{\rm par}/L$	V _{events}		
/ mows junction reconnections , e.g.		D^+	$5.3 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$		
$q \underline{\qquad} \overline{q} \qquad q \underline{\qquad} \overline{q}$		Λ_c^+	$1.2 \cdot 10^{-2}$	$6.6 \cdot 10^{-3}$		
\rightarrow		Σ_c^{++}	$1.3 \cdot 10^{-2}$	$5.4 \cdot 10^{-4}$		
		Σ_c^+	$1.5 \cdot 10^{-2}$	$5.2 \cdot 10^{-4}$		
q q q q		Σ_c^0	$1.3 \cdot 10^{-2}$	$5.1 \cdot 10^{-4}$		
(b) Type II: junction-style reconnection		Σ_c^{*++}	$2.2 \cdot 10^{-3}$	$9.5 \cdot 10^{-4}$		
For the narameters used in that stud	V	Σ_c^{*+}	$2.4 \cdot 10^{-3}$	$9.4 \cdot 10^{-4}$		
\vec{a}	y,	Σ_c^{*0}	$2.2 \cdot 10^{-3}$	$9.1 \cdot 10^{-4}$		
$^{1} - A_{c}/D^{+}$ increased by factor 2 / 2	_	ccq^{7}	$2.1 \cdot 10^{-4}$	$1.0 \cdot 10^{-7}$		
$\Lambda_{\rm L}/{\rm B}^+$ by factor 3^J \bar{J}		B^+	$1.6 \cdot 10^{-3}$	$2.3 \cdot 10^{-3}$		
$q \longrightarrow q q q q q q q q q q q q q q q q q q$		Λ_b^0	$8.2 \cdot 10^{-4}$	$3.9 \cdot 10^{-4}$		
+ potentially larger charges for Σ_{cb} ^(*)		\sum_{b}^{+}	$9.5 \cdot 10^{-4}$	$3.1 \cdot 10^{-5}$		
$q \overline{q} q \overline{q}$		\sum_{b}^{0}	$1.0 \cdot 10^{-3}$	$3.7 \cdot 10^{-5}$		
		Σ_b	$9.4 \cdot 10^{-4}$	$3.2 \cdot 10^{-5}$		
		\sum_{b}^{*+}	$9.5 \cdot 10^{-4}$	$3.1 \cdot 10^{-5}$		
		Σ_b^{*0}	$1.0 \cdot 10^{-3}$	$3.7 \cdot 10^{-5}$		
$\begin{array}{ccc} q & g \\ \searrow & & & & \\ & & & & & \\ \end{array}$		\sum_{b}^{n}	$9.4 \cdot 10^{-4}$	$3.2 \cdot 10^{-5}$		
$a \qquad q \qquad g \qquad g \qquad g \qquad q \qquad q \qquad q \qquad q \qquad q \qquad q$		bcq'	$1.8 \cdot 10^{-6}$	0		
		bbq'	$1.1 \cdot 10^{-6}$	0		
g q q' \bar{q}						
Peter Skands Monash	U			1		

Heavy-Elavour Baryons

Heavy-Elavour Baryons

q

(Some) LHCb measurements

D_s asymmetry (S. Klaver, Moriond 2018)

 $\frac{\sigma(pp \to D_s^+) - \sigma(pp \to D_s^-)}{\sigma(pp \to D_s^+) + \sigma(pp \to D_s^-)}$

Strong p⊤ dependence in Pythia, not seen in data

High
$$p_T \succ$$
 Coherence effect?

Multiply Heavy Hadrons?

Heavy flavours produced perturbatively, not in string/cluster breakups;

So why would multiply heavy hadrons be interesting as soft probes?

Because they also probe the confinement field in unique ways (colour- ϵ_{ijk})

E.g., the Ξ_{cc} has been measured LHCb-PAPER-2019-037

Does its rate vary with associated track density?

Christiansen, Skands, JHEP 1508 (2015) 003							
	ColourRe	= 0					
Particle	New CR	model (N_{par}	$/N_{\rm events})$	Old CR model			
	string	junction	all	$N_{\rm par}/N_{\rm events}$ (all)			
D^+	$5.3 \cdot 10^{-2}$	0	$5.3 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$			
Λ_c^+	$4.0 \cdot 10^{-3}$	$7.9 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$6.6 \cdot 10^{-3}$			
Σ_c^{++}	$2.7 \cdot 10^{-4}$	$1.3 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$5.4 \cdot 10^{-4}$			
Σ_c^+	$2.5 \cdot 10^{-4}$	$1.5 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$5.2 \cdot 10^{-4}$			
Σ_c^0	$2.5 \cdot 10^{-4}$	$1.3 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$5.1 \cdot 10^{-4}$			
Σ_c^{*++}	$5.1 \cdot 10^{-4}$	$1.7 \cdot 10^{-3}$	$2.2\cdot10^{-3}$	$9.5\cdot10^{-4}$			
Σ_c^{*+}	$4.9 \cdot 10^{-4}$	$1.9 \cdot 10^{-3}$	$2.4 \cdot 10^{-3}$	$9.4 \cdot 10^{-4}$			
Σ_c^{*0}	$4.8 \cdot 10^{-4}$	$1.7 \cdot 10^{-3}$	$2.2 \cdot 10^{-3}$	$9.1 \cdot 10^{-4}$			
ccq^7	0	$2.1 \cdot 10^{-4}$	$2.1 \cdot 10^{-4}$	$1.0 \cdot 10^{-7}$			
B^+	$1.6 \cdot 10^{-3}$	0	$1.6 \cdot 10^{-3}$	$2.3 \cdot 10^{-3}$			
Λ_b^0	$1.9 \cdot 10^{-4}$	$6.3 \cdot 10^{-4}$	$8.2 \cdot 10^{-4}$	$3.9 \cdot 10^{-4}$			
Σ_b^+	$1.1 \cdot 10^{-5}$	$9.3\cdot10^{-4}$	$9.5\cdot10^{-4}$	$3.1 \cdot 10^{-5}$			
Σ_{b}^{0}	$1.2 \cdot 10^{-5}$	$1.0 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	$3.7 \cdot 10^{-5}$			
Σ_{h}^{-}	$1.1 \cdot 10^{-5}$	$9.3\cdot10^{-4}$	$9.4 \cdot 10^{-4}$	$3.2 \cdot 10^{-5}$			
Σ_{b}^{*+}	$1.1 \cdot 10^{-5}$	$9.3 \cdot 10^{-4}$	$9.5 \cdot 10^{-4}$	$3.1 \cdot 10^{-5}$			
Σ_{b}^{*0}	$1.2 \cdot 10^{-5}$	$1.0 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	$3.7 \cdot 10^{-5}$			
Σ_{b}^{*-}	$1.1 \cdot 10^{-5}$	$9.3\cdot10^{-4}$	$9.4 \cdot 10^{-4}$	$3.2 \cdot 10^{-5}$			
bcq^7	0	$1.8 \cdot 10^{-5}$	$1.8 \cdot 10^{-5}$	0			
bbq^7	0	$1.1 \cdot 10^{-6}$	$1.1 \cdot 10^{-6}$	0			

Note: the baryon "predictions" depend on poorly constrained model parameters; highlight measurement sensitivity

To discuss: observables to tell apart ...

CR: longitudinal (1D) strings + transverse boosts: flow-like effects

No <**ç**> enhancement; low velocity dispersions relative to common boosts Additional tracers: multiply heavy baryons (will at least ➤ constraints!)

Ropes etc: longitudinal (1D) strings with higher effective tensions

Strangeness enhancement + higher <p_>, but still "1D"

► rank ordering, const dN/dy?

Shoving etc.: Longitudinal strings with transverse repulsions

1D "rank" still relevant for $\langle \mathcal{B} \rangle$, $\langle \zeta \rangle$, and (local) p_T conservation > correlations?

+ higher tensions? Is $< p_T >$ correlated or anti-correlated with $< \zeta >$, $< \mathcal{B} >$?

Thermal/Statistical systems: 3D systems with higher effective T

Very high dispersions, 3D.

Quantum number and p_T conservation not ordered in "rank" at all?

Extra Slides

We wanted to know if "violent" collision events produced higher-strength fields.

Smoking gun would be a higher fraction of strange particles being produced

(higher-strength fields \implies more energy per "space-time volume" \implies easier to produce higher-mass quark-antiquark pairs)

Jackpot!

Now working on models in which nearby fragmenting fields interact with each other.

Interactions between QCD strings!

Higher tensions + repulsion effects ➤ modifications in high-density environments (Competing idea: the whole thing turns into a near-perfect liquid which gets heated up.)

D meson associated tracks (ALICE)

K* and φ (ALICE)

NB: n_{ch} dependence measured separately, in arXiv:1910.14397

к*⁰/л

0.06

0.04

0.02

K* and φ multiplicity dependence (ALICE)

