P. Skands

P. Skands

P. Skands

A. Gehrmann-de-Ridder, M. Ritzmann, E. Laenen, L. Hartgring

P. Skands

A. Gehrmann-de-Ridder, M. Ritzmann, E. Laenen, L. Hartgring

"New" ?

For matching to the first emission:

= PYTHIA scheme Sjöstrand & Bengtsson, PLB 185 (1987) 435, NPB 289 (1987) 810 (reformulated for antennae)

For matching to the first loop:

= POWHEG scheme (real-emission part same as PYTHIA, hence compatible)

Nason, JHEP 0411 (2004) 040; Nason, Ridolfi, JHEP 0608 (2006) 077; ...

Lund, Mueller, Catani-Seymour, St Petersburg, Kosower, Gehrmann-Glover, ... "Global" : Gustafson & Pettersson, NPB 306 (1988) 746 + Gehrmann et al. (2005) "Sector" : Kosower. PRD 57 (1998) 5410

What is new (apart from antennae):

Giele, Kosower, PS, PRD 84 (2011) 054003

Repeating this for the next emission, and the next, ...

GKS ~ multileg scheme (unitary) that reduces to PYTHIA/POWHEG at 1st order

Unitarity → No "matching scale" needed

Faster than MLM, CKKW (no initialization, no separate n-parton phase-spaces)

Calculation also yields ~10 automatic uncertainty estimates at a moderate speed penalty

1st Order: PYTHIA and POWHEG

PYTHIA FSR: Sjöstrand & Bengtsson, PLB185(1987)435, NPB289(1987)810 Drell-Yan: Miu & Sjöstrand, PLB449(1999)313 **Real Radiation:** $\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}\Big|_{\mathrm{PS}} = \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}\Big|_{\mathrm{PS1}} + \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}\Big|_{\mathrm{PS2}} = \frac{\sigma_0}{\hat{s}}\frac{\alpha_{\mathrm{s}}}{2\pi}\frac{4}{3}\frac{\hat{s}^2 + m_{\mathrm{W}}^4}{\hat{t}\hat{u}}$ Use PS as overestimate. Correct to R/B via veto: $\begin{aligned} R_{\rm qg \to q'W}(\hat{s}, \hat{t}) &= \frac{(\mathrm{d}\hat{\sigma}/\mathrm{d}\hat{t})_{\rm ME}}{(\mathrm{d}\hat{\sigma}/\mathrm{d}\hat{t})_{\rm PS}} = \boxed{\frac{\hat{s}^2 + \hat{u}^2 + 2m_{\rm W}^2\hat{t}}{\hat{s}^2 + 2m_{\rm W}^2(\hat{t} + \hat{u})}} \end{aligned}$ Unitarity → Modified Sudakov Factor: $\exp\left(-\int_{t}^{t_{\max}} \mathrm{d}t' \frac{\alpha_{\mathrm{s}}(t')}{2\pi} \sum_{a} \int_{x}^{1} \mathrm{d}z \frac{x' f_{a}(x',t')}{x f_{b}(x,t')} P_{a \to bc}(z)\right)$ Inclusive Cross Section (at fixed underlying Born variables): Unitarity + no normalization correction \rightarrow remains σ_0 $\rightarrow B = \sigma_0 = |M_{\text{Born}}|^2$ Cancels when normalizing to $1/\sigma$ and integrating over Born

Note: → tuning of standalone PYTHIA done with this matching scheme Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv:1109.5295

1st Order: PYTHIA and POWHEG

PYTHIA

Note: → tuning of standalone PYTHIA done with this matching scheme Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv:1109.5295

POWHEG

Cancels when normalizing to $1/\sigma$ and integrating over Born

Differences?

Slide from T. Sjöstrand, TH-LPCC workshop, August 2011, CERN

Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP for showers, so "trivial" to interface any external program, including POWHEG. Problem: for ISR

$$p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$$

 $\int d\Phi_r \frac{R(v,r)}{B(v)} \theta(k_{\rm T}(v,r) - p_{\rm T})$ not needed if shower ordered in p_T?

i.e. p_{\perp} decreases for $\theta^* > 90^\circ$ but $p_{\perp evol}$ monotonously increasing. Solution: run "power" shower but kill emissions above the hardest one, by POWHEG's definition.

Available, for ISR-dominated, coming for QCD jets with FSR issues.

in PYTHIA 8

Note: Other things that may differ in comparisons: PDFs (NLO vs LO), Scale Choices

VINCIA

What is it?

Plug-in to PYTHIA 8 http://projects.hepforge.org/vincia

What does it do?

"Matched Markov antenna showers"

Improved parton showers

+ Re-interprets tree-level matrix elements as $2 \rightarrow n$ antenna functions

+ Extends matching to soft region (no "matching scale")

Automated uncertainty estimates

Systematic variations of shower functions, evolution variables, μ_R , etc.

→ A vector of output weights for each event (central value = unity = unweighted)

Who is doing it?

GEEKS: Giele, Kosower, PS

+ Collaborations with Sjostrand (Pythia 8 interface), Gehrmann-de-Ridder & Ritzmann (mass effects), Lopez-Villarejo & Larkoski (sector showers, helicity-dependence), Hartgring & Laenen (NLL/NLO multileg), Diana (ISR), Volunteers (Tuning)

+3

Legs

The Denominator $a_i \rightarrow \sum_{i=1}^{|M_{F+1}|^2} a_i |M_F|^2$

In a traditional parton shower, you would face the following problem:

Existing parton showers are *not* really Markov Chains

Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

The Denominator ai

In a traditional parton shower, you would face the following problem:

Existing parton showers are *not* really Markov Chains

Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

rms

Matched Markovian Antenna Showers

Antenna showers: one term per parton *pair* $2^nn! \rightarrow n!$

(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = \min(Q_{E1}, Q_{E2}, \dots, Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Showers

Antenna showers: one term per parton *pair* $2^nn! \rightarrow n!$

(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = min(Q_{E1}, Q_{E2}, \dots, Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is: $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

+ J. Lopez-Villarejo \rightarrow I term at *any* order

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Distribution of Log10(PSLo/MELO) (inverse ~ matching coefficient)

Dead Zone: I-2% of phase space have no strongly ordered paths leading there*

^{*}fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Better Approximations

Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching coefficient)

Generate Trials without imposing strong ordering

+ Matching (+ full colour)

Uncertainty Variations

A result is only as good as its uncertainty

- Normal procedure:
 - Run MC 2N+1 times (for central + N up/down variations)
 - Takes 2N+1 times as long
 - + uncorrelated statistical fluctuations

Uncertainty Variations

A result is only as good as its uncertainty

- Normal procedure:
 - Run MC 2N+1 times (for central + N up/down variations)
 - Takes 2N+1 times as long
 - + uncorrelated statistical fluctuations

Automate and do everything in one run

- VINCIA: all events have weight = I
- Compute unitary alternative weights on the fly
 - → sets of alternative weights representing variations (all with <w>=1) Same events, so only have to be hadronized/detector-simulated ONCE!

MC with Automatic Uncertainty Bands

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

	Weight	
Nominal		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$	

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

	Weight	
Nominal		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$	

+ Unitarity

For each *failed* branching:

$$P_{2;no} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

+ Matching

Differences explicitly matched out

(Up to matched orders)

(Can in principle also include variations of matching scheme...)

	Weight	
Nominal		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$	

+ Unitarity

For each *failed* branching:

$$P_{2;\text{no}} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

Putting it Together

VinciaMatching:order = 0

VinciaMatching:order = 3

 $1/N_{a}^{2}$

0.4

SECTOR SHOWERS

J. Lopez-Villarejo & PS, arXiv: 1109.3608

Also discussed in Larkoski & Peskin, PRD81 (2010) 054010, PRD84 (2011) 034034

SECTOR SHOWERS

J. Lopez-Villarejo & PS, arXiv:1109.3608

Also discussed in Larkoski & Peskin, PRD81 (2010) 054010, PRD84 (2011) 034034

······ *)shows Global *without* any ordering condition imposed → overcounting

NUMBER OF TERMS

Global FSR shower (default VINCIA)

	"Traditional"	Vincia Markov global	Vincia Markov sector
	parton shower	antenna shower	antenna shower
# of terms produced in the shower	2 ^N N!	N	1

N = number of emitted partons

NUMBER OF TERMS

→ Sector shower

	"Traditional"	Vincia Markov global	Vincia Markov sector
	parton shower	antenna shower	antenna shower
# of terms produced in the shower	2 ^N N!	N	1

N = number of emitted partons

()- or ()) $3 \rightarrow 4$ I term per phase-space point

SECTOR IMPLEMENTATION

- Implementation based on the global shower setup.
- Antenna functions are different than in the global case.

 — Challenges (partitioning of collinear radiation singularities)
- Different criteria for separating sectors in phase space Looking for "best" sub-LL behavior.

RESULTS->FF

PS, Weinzierl: Phys.Rev.D79 (2009) ; Nagy, et al. JHEP 0905 (2009) 088

Test: fragmentation function for a quark

RESULTS -> SPEED

Matched through:	Z→3	Z→4	Z→5	Z→6
Pythia 6	0.20		ms/event	
Pythia 8	0.22	$Z \rightarrow qq (q=udscb) + shower.$ Matched and unweighted. Hadronization of gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory		
Vincia Global	0.30	0.77	6.40	130.00
Vincia Sector	0.27	0.63	6.90	52.00
Vincia Global (Q _{match} = 5 GeV)	0.29	0.60	2.40	20.00
Vincia Sector (Q _{match} = 5 GeV)	0.26	0.50	1.40	6.70
Sherpa (Q _{match} = 5 GeV)	5.15*	53.00*	220.00*	400.00*
* + initialization time	1.5 minutes	7 minutes	22 minutes	2.2 hours

J. Lopez-Villarejo & PS, arXiv: 1109.3608

THE INCIA CODE

HTTP://PROJECTS.HEPFORGE.ORG/VINCIA

VINCIA STATUS

PLUG-IN TO PYTHIA 8 Stable and reliable for Final-State Jets (e.g., Lep)

Automatic matching and Uncertainty bands

IMPROVEMENTS IN SHOWER (SMOOTH ORDERING, NLC, MATCHING, ...)

PAPER ON MASS EFFECTS ~ READY (with A. Gehrmann-de-Ridder & M. Ritzmann)

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING (with L. Hartgring & E. Laenen, NIKHEF)

POLARIZED SHOWERS

(with A. Larkoski, SLAC, & J. Lopez-Villarejo, CERN)

→ INITIAL-STATE SHOWERS

(with W. Giele, D. Kosower, G. Diana, M. Ritzmann)

VINCIA STATUS

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING (WITH L. HARTGRING & E. LAENEN, NIKHEF)

POLARIZED SHOWERS

(with A. Larkoski, SLAC, & J. Lopez-Villarejo, CERN)

→ INITIAL-STATE SHOWERS

(with W. Giele, D. Kosower, G. Diana, M. Ritzmann)

Backup Slides

Simple Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching

(revert to strong ordering beyond matched multiplicities)

LEP event shapes

PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?

Multijet resolution scales

 y_{45} = scale at which 5th jet becomes resolved ~ "scale of 5th jet"

4-Jet Angles

4-jet angles

Sensitive to polarization effects

Good News

VINCIA is doing reliably well

Non-trivial verification that shower+matching is working, etc.

Higher-order matching needed?

PYTHIA 8 already doing a very good job on these observables

Interesting to look at more exclusive observables, but which ones?