New Developments in Parton Showers

Work in collaboration with W. Giele, D. Kosower, J. Lopez-Villarejo,
A. Gehrmann-de-Ridder, M. Ritzmann, E. Laenen, L. Hartgring

New Developments in Parton Showers

Work in collaboration with W. Giele, D. Kosower, J. Lopez-Villarejo,
A. Gehrmann-de-Ridder, M. Ritzmann, E. Laenen, L. Hartgring

New Developments in Parton Showers

P. Skands

[^0]
New Developments in Parton Showers

P. Skands

[^1]
"New" ?

For matching to the first emission:

$=$ PYTH|A scheme Sjöstrand \& Bengtsson, PLB 185 (I987) 435, NPB 289 (1987) 810 (reformulated for antennae)

For matching to the first loop:

$=$ POWHEG Scheme Nason, JHEP 04II (2004) 040; Nason, Ridolfi, JHEP 0608 (2006) 077;
(real-emission part same as PYTHIA, hence compatible)
What is new (apart from antennae):
Repeating this for the next emission, and the next, ...
GKS ~ multileg scheme (unitary) that reduces to PYTHIA/POWHEG at $\left.\right|^{\text {st }}$ order
Unitarity \rightarrow No "matching scale" needed
Faster than MLM, CKKW (no initialization, no separate n-parton phase-spaces)
Calculation also yields ~ 10 automatic uncertainty estimates at a moderate speed penalty

$1^{\text {st }}$ Order: PYTHIA and POWHEG

PYTHIA

FSR: Sjöstrand \& Bengtsson, PLBI85(I987)435, NPB289(I987)8IO
Drell-Yan: Miu \& Sjöstrand, PLB449(I999)3I3

Real Radiation:

$$
\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS}}=\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 1}+\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 2}=\frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{\hat{s}^{2}+m_{\mathrm{W}}^{4}}{\substack{\mathrm{~W} \\ \mathrm{q}_{\left.\mathrm{q} g \rightarrow \mathrm{q}^{\prime} \mathrm{W}\right)}}}
$$

Use PS as overestimate. Correct to R / B via veto:

$$
\begin{aligned}
& R_{\mathrm{qg} \rightarrow \mathrm{q}^{\prime} \mathrm{W}}(\hat{s}, \hat{t}) \underset{\text { (+analogous for } \mathrm{qq} \rightarrow \mathrm{gW})}{=} \frac{(\mathrm{d} \hat{\sigma} / \mathrm{d} \hat{t})_{\mathrm{ME}}}{(\mathrm{~d} \hat{\sigma} / \mathrm{d} \hat{t})_{\mathrm{PS}}}=\frac{\hat{s}^{2}+\hat{u}^{2}+2 m_{\mathrm{W}}^{2} \hat{t}}{\hat{s}^{2}+2 m_{\mathrm{W}}^{2}(\hat{t}+\hat{u})} \\
& \text { Unitarity } \rightarrow \text { Modified Sudakov Factor: } \\
& \exp \left(-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \frac{\alpha_{\mathrm{s}}\left(t^{\prime}\right)}{2 \pi} \sum_{a} \int_{x}^{1} \mathrm{~d} z \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)} P_{a \rightarrow b c}(z)\right)
\end{aligned}
$$

Inclusive Cross Section (at fixed underlying Born variables):

$$
\begin{aligned}
& \text { Unitarity + no normalization correction } \rightarrow \text { remains } \sigma_{0} \\
& \rightarrow B=\sigma_{0}=\left|M_{\text {Born }}\right|^{2}
\end{aligned}
$$

Cancels when normalizing to $1 / \sigma$ and integrating over Born

Note: \rightarrow tuning of standalone PYTHIA done with this matching scheme
Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv: I I 09.5295

$1^{\text {st }}$ Order: PYTHIA and POWHEG

PYTHIA
FSR: Sjöstrand \& Bengtsson, PLBI85(1987)435, NPB289(1987)8।0 Drell-Yan: Miu \& Sjöstrand, PLB449(1999)3।3

Real Radiation:

$$
\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS}}=\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 1}+\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 2}=\frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{\hat{s}^{2}+m_{\mathrm{W}}^{4}}{\text { (for }_{\left.\mathrm{Wg} \rightarrow \mathrm{~g}^{\prime} \mathrm{W}\right)} \hat{\hat{u}}}
$$

Use PS as overestimate. Correct to R / B via veto:

$$
\begin{aligned}
& \underset{\substack{\left.\mathrm{gq} \rightarrow \mathrm{q}^{\prime} \mathrm{W}(\hat{s}, \hat{t}) \\
\text { (analogous for qq } \rightarrow \mathrm{gW}\right)}}{R_{\text {a }}}=\frac{(\mathrm{d} \hat{\sigma} / \mathrm{d} \hat{t})_{\mathrm{ME}}}{(\mathrm{~d} \hat{\sigma} / \mathrm{d})_{\mathrm{PS}}}=\frac{\hat{s}^{2}+\hat{u}^{2}+2 m_{\mathrm{W}}^{2} \hat{t}}{\hat{s}^{2}+2 m_{\mathrm{W}}^{2}(\hat{t}+\hat{u})} \\
& \text { Unitarity } \rightarrow \text { Modified Sudakov Factor: } \\
& \exp \left(-\int_{t}^{t_{\text {max }}} \mathrm{d} t^{\prime} \frac{\alpha_{\mathrm{s}}\left(t^{\prime}\right)}{2 \pi} \sum_{a} \int_{x}^{1} \mathrm{~d} z \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)} P_{a \rightarrow b c}(z)\right)
\end{aligned}
$$

Inclusive Cross Section (at fixed underlying Born variables):

$$
\text { Unitarity + no normalization correction } \rightarrow \text { remains } \sigma_{0}
$$

$\rightarrow B=\sigma_{0}=\left|M_{\text {Born }}\right|^{2}$
Cancels when normalizing to $1 / \sigma$ and integrating over Born
Note: \rightarrow tuning of standalone PYTHIA done with this matching scheme Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv: I 109.5295

POWHEG
Nason, JHEP II(2004)040
Drell-Yan: Alioli et al., JHEP 07(2008)060

Real Radiation:

$$
R_{g \bar{q}, q}+R_{q g, \bar{q}}=\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{ME}}=\frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{t^{2}+\hat{u}^{2}+2 m_{\mathrm{W}}^{2} \hat{s}}{\text { (using Sjöstrand's notation) }} \frac{\hat{q^{\prime}} \hat{\mathrm{W}}}{}
$$

Use R / B as splitting kernels (via overestimate + veto)
(+analogous for $\mathrm{qq} \rightarrow \mathrm{gW}$)

Unitarity \rightarrow Sudakov Factor:

(explicit formula only for final-state in org paper \rightarrow no PDF factors here)

$$
\begin{array}{cc}
\Delta_{R}^{(\mathrm{NLO})}\left(p_{\mathrm{T}}\right)=e^{-\int d \Phi_{r} \frac{R(v, r)}{B(v)} \theta\left(k_{\mathrm{T}}(v, r)-p_{\mathrm{T}}\right)} \\
\quad \begin{array}{c}
\text { (not needed if shower ordered in } \mathrm{LT}, \\
\text { though watch out, see next) }
\end{array}
\end{array}
$$

Inclusive Cross Section (at fixed underlying Born variables): Include correction to NLO inclusive level \rightarrow becomes $\sigma_{N L O}$

$$
\begin{aligned}
\rightarrow \quad \bar{B}(v) & =B(v)+V(v) \\
& +\int(R(v, r)-C(v, r)) d \Phi_{r}
\end{aligned}
$$

Cancels when normalizing to $1 / \sigma$ and integrating over Born

Differences?

Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP for showers, so "trivial" to interface any external program, including POWHEG.
Problem: for ISR

$$
p_{\perp}^{2}=\mathrm{p}_{\perp \mathrm{evol}}^{2}-\frac{\mathrm{p}_{\perp \mathrm{evol}}^{4}}{p_{\perp \mathrm{evol}, \mathrm{max}}^{2}}
$$

$$
\int d \Phi_{r} \frac{R(v, r)}{B(v)} \theta\left(k_{\mathrm{T}}(v, r)-p_{\mathrm{T}}\right)
$$

not needed if shower ordered in PT ?
i.e. p_{\perp} decreases for $\theta^{*}>90^{\circ}$ but $\mathrm{p}_{\perp \text { evol }}$ monotonously increasing. Solution: run "power" shower but kill emissions above the hardest one, by POWHEG's definition.
(a)

(b)

Available, for ISR-dominated, coming for QCD jets with FSR issues.

VINCIA

What is it?

Plug-in to PYTHIA 8 http://projects.hepforge.org/vincia

What does it do?

The VINCIA Code
"Matched Markov antenna showers"
Improved parton showers

+ Re-interprets tree-level matrix elements as $2 \rightarrow \mathrm{n}$ antenna functions
+ Extends matching to soft region (no "matching scale")
Automated uncertainty estimates
Systematic variations of shower functions, evolution variables, μ_{R}, etc.
\rightarrow A vector of output weights for each event (central value $=$ unity $=$ unweighted)

Who is doing it?

GEEKS: Giele, Kosower, PS

+ Collaborations with Sjostrand (Pythia 8 interface), Gehrmann-de-Ridder \& Ritzmann (mass effects),
Lopez-Villarejo \& Larkoski (sector showers, helicity-dependence), Hartgring \& Laenen (NLL/NLO multileg),
Diana (ISR), Volunteers (Tuning)

Markov pQCD

Start at Born level
$\left|M_{F}\right|^{2}$

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHA trick }}{a_{i}} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHIAA trick }}{ } a_{i} \xrightarrow[\left|M_{F+1}\right|^{2}]{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower
Virtual $=-\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHA trick }}{a_{i}} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHA trick }}{ } a_{i} \xrightarrow[\left|M_{F+1}\right|^{2}]{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element

$\underset{\substack{ \\\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEG rick }}}{ }+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHH } 2 \text { trick }}{\rightarrow} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{ \\\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEG rick }}}{ }+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHH } 2 \text { trick }}{\rightarrow} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{ \\\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEG Grick }}}{ }+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \operatorname{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHL }}{a_{i}} \xrightarrow{\text { ricick }} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEGG rick }}}{\mid \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]}+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \operatorname{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHL } L \text { rick }}{\rightarrow} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{ \\\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEG rick }}}{ }+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \operatorname{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHIL }}{a_{i}} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{ \\\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEG rick }}}{ }+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \operatorname{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHL }}{a_{i}} \xrightarrow{\text { ricick }} \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{ \\\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2} \\ \text { POWHEG rick }}}{ }+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHHIL }}{a_{i}} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\underset{\substack{ \\\left|M_{F}\right|^{2} \\ \text { POWHEG trick }}}{\rightarrow\left|M_{F}\right|^{2}}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last
\rightarrow proliferation of terms
Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
\begin{aligned}
& E \sim K+K+K+M, \begin{array}{l}
i=2 \\
\rightarrow 4 \text { terms }
\end{array} \\
& (K \sim \pi+K) \substack{i=1 \\
\rightarrow 2 \text { terms }} \substack{i}
\end{aligned}
$$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last
\rightarrow proliferation of terms
Number of histories contributing to $\mathbf{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
(K \sim M+K) \substack{j=1 \\ \rightarrow 2 \text { terms }} \substack{j=1}
$$

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair
$\mathbf{2}^{\mathrm{n}} \mathrm{n}!\rightarrow \mathrm{n}$!

(+ generic Lorentz-
invariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration,"ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathrm{n}!\rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
2^{n} n!\rightarrow n!
$$

(+ generic Lorentz-
invariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration, "ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathrm{n}!\rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms

[^2]
Approximations

Distribution of Logıo(PSLo/MELo) (inverse ~ matching coefficient)

Dead Zone: I-2\% of phase space have no strongly ordered paths leading there*
*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

\rightarrow Better Approximations

Distribution of Logı(PSLo/MELo) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

$2 \rightarrow 4$

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{ll}
\hat{p}_{\perp}^{2} & \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

$2 \rightarrow 4$

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} & \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

+ Matching (+ full colour)

\rightarrow A very good all-orders starting point

Uncertainties

Uncertainty Variations

A result is only as good as its uncertainty

Normal procedure:
Run MC $2 \mathrm{~N}+$ I times (for central +N up/down variations)
Takes $2 \mathrm{~N}+\mathrm{I}$ times as long

+ uncorrelated statistical fluctuations

Uncertainty Variations

A result is only as good as its uncertainty

Normal procedure:
Run MC 2N+I times (for central + N up/down variations)
Takes $2 \mathrm{~N}+\mathrm{I}$ times as long

+ uncorrelated statistical fluctuations

Automate and do everything in one run

VINCIA: all events have weight = I
Compute unitary alternative weights on the fly
\rightarrow sets of alternative weights representing variations (all with $<w\rangle=I$) Same events, so only have to be hadronized/detector-simulated ONCE!

MC with Automatic Uncertainty Bands

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

+ Matching

Differences explicitly matched out
(Up to matched orders)
(Can in principle also include variations of matching scheme...)

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

Putting it Together

VinciaMatching:order $=0$
VinciaMatching:order $=3$

SECTOR SHOWERS

J. Lopez-Villarejo \& PS, arXiv:I 109.3608

Also discussed in Larkoski \& Peskin, PRD8I(2010)0540 IO, PRD84 (201 I)034034

- Dipole-antenna formalism (2 -> 3)

SECTOR SHOWERS

- Dipole-antenna formalism (2 -> 3)

Lund, GGG, GKS

-.-.......- *)shows Global without any ordering condition imposed \rightarrow overcounting

NUMBER OF TERMS

Global FSR shower (default VINCIA)

	"Traditional" parton shower	Vincia Markov global antenna shower	Vincia Markov sector antenna shower
\# of terms produced in the shower	$2^{\mathrm{N}} \mathrm{N}!$	N	1

$\mathrm{N}=$ number of emitted partons
2 terms per phase-space point

NUMBER OF TERMS

\rightarrow Sector shower

	"Traditional" parton shower	Vincia Markov global antenna shower	Vincia Markov sector antenna shower
\# of terms produced in the shower	$2^{\mathrm{N} N!}$	N	1

$\mathrm{N}=$ number of emitted partons

SECTOR IMPLEMENTATION

- Implementation based on the global shower setup.
- Antenna functions are different than in the global case. \rightarrow Challenges (partitioning of collinear radiation singularities)
- Different criteria for separating sectors in phase space Looking for "best" sub-LL behavior.

RESULTS->FF

Test: fragmentation function for a quark

RESULTS -> SPEGD

Matched through:	$\mathrm{Z} \rightarrow 3$	$\mathrm{Z} \rightarrow 4$	$Z \rightarrow 5$	$\mathrm{Z} \rightarrow 6$
Pythia 6	0.20	ms/event $\mathrm{Z} \rightarrow \mathrm{qq}(\mathrm{q}=u d s c b)+$ shower. Matched and unweighted. Hadronization of gfortran/g++ with gec v.4.4-O2 on single 3.06 GHz processor with 4GB memory		
Pythia 8	0.22			
Vincia Global	0.30	0.77	6.40	130.00
Vincia Sector	0.27	0.63	6.90	52.00
Vincia Global ($\mathrm{Qmatch}=5 \mathrm{GeV}$)	0.29	0.60	2.40	20.00
Vincia Sector ($\mathrm{Qmach}=5 \mathrm{GeV}$)	0.26	0.50	1.40	6.70
Sherpa ($\left.\mathrm{Q}_{\text {match }}=5 \mathrm{GeV}\right)$	5.15*	53.00*	220.00*	400.00*
* + initialization time	1.5 minutes	7 minutes	22 minutes	2.2 hours

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.I50, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

VINCIA STATUS
PLUG-IN TO PYTHIA 8
STABLE AND RELIABLE FOR FINAL-
STATE JETS (Eg. Iep)
AUTOMATIC MATCHING AND
UNCERTAINTY BANDS
IMPROVEMENTS IN SHOWER
(SMOOTH ORDERING, NLC, MATCHING, ...)
PAPER ON MASS EFFECTS~READY
(WITH A. GEHRMANN-DE-RIDDER \& M. RITZMANN)
NEXT STEPS
MULTI-LEG ONE-LOOP MATCHING
(WITH L. HARTGRING \& E. LAENEN, NIKHEF)
POLARIZED SHOWERS
(WITH A. LARKOSKI, SLAC, \& J. LOPEZ-VILLAREJO, CERN)
\rightarrow INITIAL-STATE SHOWERS
(With W. Giele, D. Kosower, G. Diana, M. Ritzmann)

VINCIA STATUS
Hoviver
\#1 GUEST RATED SHOWERHEAD - ALL NEW

NEXT STEPS
MULTI-LEG ONE-LOOP MATCHING
(WITH L. HARTGRING \& E. LAENEN, NIKHEF)
POLARIZED SHOWERS
(WITH A. LARKOSKI, SLAC, \& J. LOPEZ-VILLAREJO, CERN)
\rightarrow INITIAL-STATE SHOWERS
(WITH W. GIELE, D. KOSOWER, G. DIANA, M. RITZMANN)
\qquad

Simple Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching
(revert to strong ordering beyond matched multiplicities)

(Subleading Singularities)

Isolate double-collinear region: $\alpha_{3}^{2 l^{2}}$

LEP event shapes

PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?

Multijet resolution scales

4-Jet Angles

4-jet angles

Sensitive to

 polarization effects
Good News

VINCIA is doing reliably well
Non-trivial verification that shower+matching is working, etc.

Higher-order matching needed?

PYTHIA 8 already doing a very good job on these observables

Interesting to look at more exclusive observables, but which ones?

[^0]: Work in collaboration with W. Giele, D. Kosower, J. Lopez-Villarejo,
 A. Gehrmann-de-Ridder, M. Ritzmann, E. Laenen, L. Hartgring

[^1]: Work in collaboration with W. Giele, D. Kosower, J. Lopez-Villarejo,
 A. Gehrmann-de-Ridder, M. Ritzmann, E. Laenen, L. Hartgring

[^2]: +J . Lopez-Villarejo \rightarrow I term at any order

