## Uncertainties in Monte Carlo Event Generators

(with emphasis on Pythia 8)

1. Perturbative Uncertainties
2. Hadronization Uncertainties
3. Tuning
4. Discussion ...


Peter Skands
U of Oxford \& Monash U

CMS Deep Dive Into Modelling Uncertainties
September 2023

## Brute Force

- Separate runs for each variation
- Construct \& perform all salient variations individually
- Expensive
- CPU $\leftrightarrow$ Cost
- Environmental impact
- (Duplication of) man-hours, each time
- Risk of mistakes/inconsistencies, each time
- Risk that lessons learned aren't perpetuated, each time

Sophisticated reweighting methods developed for Parton Showers

- Based on reinterpreting the veto algorithm's accept and reject probabilities
- [Vincia 1102.2126; Sherpa 1605.04692; Herwig 1605.08256; Pythia 1605.08352]
(Note: reweighting of course also done for PDFs and in Fixed-Order Calculations.)


## Perturbative Uncertainties

First guess: renormalisation-scale variations,

- $\mu_{R}^{2} \rightarrow k_{\mu} \mu_{R}^{2}$, with constant $k_{\mu} \in[0.5,2]$ or $[0.25,4], \ldots$
+ e.g., do for ISR and FSR separately $\rightarrow 7$-point variations* $\xrightarrow{\text {-seebadedep fides }}$
- Induces explicit "nuisance" terms beyond controlled orders


I think most people I know actually consider this unsatisfactory and unreliable

- Problem is, little guidance on what else to do ...

Big Problem 1: Multiscale Problems (e.g., a couple of bosons + a couple of jets)

- Not well captured by any variation $k_{\mu}$ around any single scale
- More of an issue for fixed-order calculations than for showers (which are intrinsically multiscale)

Big Problem 2: Terms that are not proportional to the lower orders

- Renormalization-scale variations $\Longrightarrow \mathrm{d} \sigma \rightarrow\left(1+\Delta \alpha_{s}\right) \mathrm{d} \sigma$
- But in general there will also be genuinely new terms at each order, $\mathrm{d} \sigma \rightarrow \mathrm{d} \sigma \pm \Delta \mathrm{d} \sigma$


## Vincia \& Pythia 8: Finite-Term Variations

## Parton Showers rely on Factorisations in Soft/Collinear Limits

$$
\left|M_{n+1}\right|^{2} \rightarrow \sum_{\text {radiators }} a_{\text {sing }}\left|M_{n}\right|^{2}
$$

- Approximations based on universal (process-independent) singular structures of gauge theories.
- Driven by $1 / Q^{2}$ poles from propagators, with spin-dependent numerators
- Renormalization-scale variations only produce terms proportional to these "kernels"

But genuine matrix elements also have "non-singular terms"

- Our solution [Vincia 1102.2126; Pythia 1605.08352]


## Non-singular variations

$$
a_{\text {sing }} \rightarrow a_{\text {sing }}+\Delta a_{\text {non-sing }}
$$

- Can also be very helpful to estimate need for higher matching/merging


## Non-Singular Variations

- Add arbitrary nonsingular term to shower kernels, and vary to estimate sensitivity to missing ME terms
- (Reasonable size estimated by comparisons between different actual MEs)
[Vincia 1102.2126;
Pythia 1605.08352]
- The shower singularities dominate for soft and collinear radiation
- The process-specific nonsingular terms dominate for hard radiation


Note: by definition, any fit of such a nuisance parameter would be process-specific

## 2. Hadronization Uncertainties

Hadronization: More parameters, many subtleties (ideally a coffee discussion...)

- Risk of purely data-driven methods (eg eigentunes) to overfit precise data at expense of tails / asymptotics / less statistically dominant (but perhaps theoretically important) data
- Risk of inconsistencies (breakdown of universality and/or inconsistent levels of accuracy and "tricks") between tuning context (eg LEP) and application context (eg LHC)
- Tensions between different measurements
- Interplay between perturbative (eg $N_{\text {Jets }}$ ) and nonperturbative (eg $N_{\text {Hadrons }}$ ) observables
- And between perturbative ( $\alpha_{S}$, merging, ...) and nonperturbative (eg HAD and MPI, ...) pars Parameter correlations; for a helping hand, see eg AutoTunes [Bellm \& Gellersen, 1908.10811]
- Tuning, at precision level, is a challenging and very complex field.


## Recent elaborate studies with Pythia 8:

- Not addressing all of the above. Some steps/suggestions towards more systematic approaches, though by no means the final word:
- [Jueid et al., 1812.07424; 2202.11546; 2303.11363]


## New: Automated Hadronization Uncertainties

## Problem:

- Given a colour-singlet system that (randomly) broke up into a specific set of hadrons:

- What is the relative probability that same system would have resulted, if the fragmentation parameters had been somewhat different?
- Would this particular final state become more likely $\left(w^{\prime}>1\right)$ ? Or less likely $\left(w^{\prime}<1\right)$
- Crucially: maintaining unitarity $\Longrightarrow$ inclusive cross section remains unchanged!

Aug 25: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan [Reweighting MC Predictions \& Automated Fragmentation Variations in Pythia 8, 2308.13459]
Method is general; demonstrated on variations of the 7 main parameters governing longitudinal and transverse fragmentation functions in PYTHIA 8
https://gitlab.com/uchep/mlhad-weights-validation

## Examples with Pythia 8

## Transverse Fragmentation Function (Gaussian)



Example

$$
\begin{gathered}
\frac{1}{2 \pi \sigma_{p_{T}}^{2}} \exp \left(-\frac{\left(\Delta p_{x}\right)^{2}+\left(\Delta p_{y}\right)^{2}}{2 \sigma_{p_{T}}^{2}}\right) \\
\text { StringPT:sigma }
\end{gathered}
$$

## Reweighting Methodology:

For each $\mathrm{p}_{\mathrm{T}}$ (Box-Muller transform):

$$
w^{\prime}=\frac{\sigma^{2}}{\sigma^{\prime 2}} \exp \left(-\kappa\left(\frac{\sigma^{2}}{\sigma^{\prime 2}}-1\right)\right)
$$

$\kappa=\left(n_{1}^{2}+n_{2}^{2}\right) / 2$ and $n_{i}$ are normally distributed random variates



## Examples with Pythia 8

## Longitudinal FF (Lund Symmetric FF)



Example
$f(z) \sim$ scaled light-cone hadron momentum fraction

$$
\propto \frac{1}{z^{1+r_{Q} b m_{Q}^{2}}}(1-z) \sqrt{a} \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)
$$

variations

## Reweighting Methodology:

Accept-Reject Algorithm (analogous to shower variations):

$$
w^{\prime}=w \prod_{i \in \text { accepted }} R_{i, \text { accept }}^{\prime}(z) \prod_{j \in \text { rejected }} R_{j, \text { reject }}^{\prime}(z)
$$

with
$R_{\text {accept }}^{\prime}(z)=\frac{P_{\text {accept }}^{\prime}(z)}{P_{\text {accept }}(z)} \quad R_{\text {reject }}^{\prime}(z)=\frac{P_{\text {reject }}^{\prime}(z)}{P_{\text {reject }}(z)}=\frac{1-P_{\mathrm{accept}}^{\prime}(z)}{1-P_{\text {accept }}(z)}$

(+ can vary 5 other parameters, in addition to $a$ )

## Example: The Strong Force Meets the Dark Sector

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and $\underline{2202.11546}$ (antiprotons, eg for AMS) $+\underline{\mathbf{2 3 0 3 . 1 1 3 6 3}}$ (all)

## QCD uncertainties on Dark-Matter Annihilation Spectra

- Compare different generators? Problem: all tuned to ~ same data
- Instead, did parametric refittings of LEP data within PYTHIA's modelling

$\langle z\rangle$, bLund, $\sigma_{p_{T}}$ : also useful for collider studies of hadronization uncertainties
+ universality tests: identifying and addressing tensions, overfitting \& universality/consistency



Other possible universality tests (eg in pp):

Different CM energies ... Different fiducial windows ... Different hard processes ...
Quarks vs Gluons ...

| Parameter | without $5 \%$ | with $5 \%$ |
| :--- | :---: | :---: |
| StringPT:Sigma | $0.3151_{-0.00010}^{+0.0010}$ | $0.3227_{-0.0028}^{+0.0028}$ |
| StringZ: aLund | $1.028_{-0.031}^{+0.031}$ | $0.976_{-0.052}^{+0.054}$ |
| StringZ: avgZLund | $0.5534_{-0.0010}^{+0.0010}$ | $0.5496_{-0.0026}^{+0.0026}$ |
| $\chi^{2} / \mathrm{ndf}$ | $5169 / 963$ | $778 / 963$ |

## Example: The Strong Force Meets the Dark Sector




Same done for antiprotons, positrons, antineutrinos Main Contact: adil.jueid@gmail.com

- Tables with uncertainties available on request. Also the spanning tune parameters of course.


## Reminder: Colour Reconnections

## High-energy pp collisions with OCD bremsstraklung

 + multi-parton interactions- Final states with very many coloured partons
- With significant overlaps in phase space
- Who gets confined with whom?
- If each has a colour ambiguity ~ 10\%, CR becomes more likely than not

$$
\begin{aligned}
& \text { Prob(no CR) } \propto\left(1-\frac{1}{N_{C}^{2}}\right)^{n_{\mathrm{MPI}}} \text { : }
\end{aligned}
$$

## mcplots.cern.ch — New and Updated coming soon!

Modern clean interface developed through 2023 (+ many improvements under the hood)

- Mainly driven by Natalia Korneeva (CMS), now an adjoint at Monash U (with support from LPCC)


## MCPLOTS

First online repository of Monte Carlo plots compared to experimental data
More than 100 Rivet analyses (simple to add new ones)
(

Being finalised now, with publication on the way.


Extra Slides

## Note on Different alpha(S) Choices



## Correlated or Uncorrelated?

What I would do: 7-point variation (resources permitting $\rightarrow$ use the automated bands?)


## Scale Variations: How Big?

## Scale variations induce 'artificial' terms beyond truncated order in QFT ~

 Allow the calculation to float by ( $1+\mathrm{O}\left(\mathrm{a}_{\mathrm{s}}\right)$ ).

## Mainstream view:

- Regard scale dependence as unphysical / leftover artefact of our mathematical procedure to perform the calculations.
- Dependence on it has to vanish in the 'ultimate solution' to QFT
$\rightarrow$ Terms beyond calculated orders must sum up to at least kill $\mu$ dependence
- Such variations are thus regarded as a useful indication of the size of uncalculated terms. (Strictly speaking, only a lower bound!)

Typical choice (in fixed-order calculations): $k \sim[0.5,1,2]$

## Scale Variations: How big?

## What do parton showers do?

- In principle, LO shower kernels proportional to $a_{s}$

Naively: do the analogous factor 2 variations of $\mu_{\mathrm{Ps}}$.

- There are at least 3 reasons this could be too conservative

1. For soft gluon emissions, we know what the NLO term is
$\rightarrow$ even if you do not use explicit NLO kernels, you are effectively NLO (in the soft gluon limit) if you are coherent and use $\mu_{\text {PS }}=\left(\mathrm{k}_{\mathrm{CMw}} \mathrm{p}_{\mathrm{T}}\right)$, with 2-loop running and $\mathrm{k}_{\mathrm{CMW}} \sim 0.65$
(somewhat $n_{f}$-dependent). [Though there are many ways to skin that cat; see next slides.]
Ignoring this, a brute-force scale variation destroys the NLO-level agreement.
2. Although hard to quantify, showers typically achieve better-than-LL accuracy by accounting for further physical effects like ( $\mathrm{E}, \mathrm{p}$ ) conservation
3. We see empirically that (well-tuned) showers tend to stay inside the envelope spanned by factor-2 variations in comparison to data

## Scale variations: How Big?

Poor man's recipe: Use instead?
ee $\rightarrow$ hadrons

- Sure ... but still somewhat arbitrary

Instead: add compensation term to preserv

- Still allowing full factor-2 outside that limit.

1-Thrust (udsc)


Pythia includes such a compensation term, : uncertainty bands (next slides).

- Since aggressive definitions can lead to overcom| predictions $\rightarrow$ very small uncertainty bands, we cl $\stackrel{\digamma}{\digamma}$ PYTHIA $\rightarrow$ larger bands.

$$
\left.\begin{array}{l}
P^{\prime}(t, z)=\frac{\alpha_{s}\left(k p_{\perp}\right)}{2 \pi}\left(1+(1-\zeta) \frac{\alpha_{s}\left(\mu_{\max }\right)}{2 \pi} \beta_{0} \ln k\right) \frac{P(z)}{t} \\
\zeta^{\sigma} \text { Kills the compensation outside the soft limit }
\end{array}\right\} \begin{array}{cl}
z & \text { for splittings with a } 1 / z \text { singularity } \begin{array}{c}
\text { Small absolute size of } \\
\text { compensation }
\end{array} \\
\begin{array}{cl}
1-z & \text { for splittings with a } 1 /(1-z) \text { singularity } \\
\min (z, 1-z) & \text { for splittings with a } 1 /(z(1-z)) \text { singularity }
\end{array}
\end{array}
$$

