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๏Model full event structure by repeated/nested factorizations 
•→ Split the problem into many ~ simple pieces 

๏

Event Generators: Divide and Conquer
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Quantum mechanics → Probabilities → Make Random Choices (as in nature)  
➜ Markov-Chain Monte Carlo ➜ “Event Generators”
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𝒫event = 𝒫Hard ⊗ 𝒫Res ⊗ 𝒫FSR ⊗ 𝒫Had ⊗ 𝒫Dec ⊗ …

Hadronization (and hadron decays) 
Non-perturbative model of color-singlet parton systems → hadrons

Hard Process & Decays:  
Process-specific (N)LO matrix elements → Sets “Hard” scale: QMAX 

Accelerated Charges ➜ Perturbative Bremsstrahlung:  
Differential evolution, dP/dQ2, from QMAX to QHadronization ~ 1 GeV 



1) Bremsstrahlung via Parton Showers

3

Mathematically, gauge amplitudes 
factorize in singular limits

i

j

k

a

b

Partons ab 
→ collinear:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

 = DGLAP splitting kernels”, with P(z) z = Ea /(Ea + Eb)

/ 1

2(pa · pb)

Gluon j 
→ soft: |MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton j really emitted by (i,k) “dipole” or “antenna” (eikonal factors)

see e.g PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure

These are the building blocks of parton showers (DGLAP, dipole, antenna, …) 
(+ running coupling, unitarity, and explicit (E,p) conservation.)

http://arxiv.org/abs/arXiv:1207.2389


Shower Uncertainties: Non-Singular Variations in Pythia 8
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๏Parton Showers rely on Factorisations in Soft/Collinear Limits 

•Approximations based on universal singular structures of gauge theories. 

•Driven by  poles from propagators, with spin-dependent numerators 

•Renormalization-scale variations only produce terms  to these “kernels”  

๏But genuine matrix elements also have “non-singular terms” 
•Our solution 

•Can also be helpful to estimate need for higher matching/merging

1/Q2

∝

|Mn+1 |2 → ∑
radiators

asing |Mn |2

Non-singular variations

asing → asing+ Δanon−sing

[Vincia 1102.2126; Pythia 1605.08352] 
๏

https://arxiv.org/abs/1605.08352


Non-Singular Variations: Example
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Figure 3: Illustration of the default nonsingular variations for FSR splitting kernels, corresponding to cNS =
±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Note that the range of the ratio plot is greater than in
fig. 1 Distribution of 1-Thrust for e+e� ! hadrons at the Z pole, excluding b-tagged events; ISR switched off;
data from the L3 experiment [26].

m
2
b = 2pb · pg [29], with pb the 4-momentum of the massive quark and pg that of the emitted gluon.

(For spacelike virtual massive quarks, the mass correction has the opposite sign [8].) Thus,

P
0(t, z) =

↵s

2⇡
C

 
P (z) + cNS Q

2
/m

2
dip

t

!
, (38)

where C is the colour factor. The variation can therefore be obtained by introducing a spurious term
proportional to Q

2
/m

2
dip in the splitting kernel used to compute the accept probability, hence

R
0
acc =

P
0
acc

Pacc
= 1 +

cNS Q
2
/m

2
dip

P (z)
, (39)

from which we also immediately confirm that the relative variation explicitly vanishes when Q
2
! 0

or P (z) ! 1.
To motivate a reasonable range of variations, we take the nonsingular terms that different physical

matrix elements exhibit as a first indicator, and supplement that by considering the terms that are
induced by PYTHIA’s matrix-element corrections (MECs) for Z boson decays [30]. In particular,
the study in [28] found order-unity differences (in dimensionless units) between different physical
processes and three different antenna-shower formalisms: Lund dipoles a la ARIADNE [31,32], GGG
antennae a la VINCIA [7, 33, 34], and Sector antennae a la Kosower [28, 35]. Therefore, here we also
take variations of order unity as the baseline for our recommendations.

In fig. 3, we illustrate the splitting-kernel variation taking cNS = ±2 as a first guess at a reasonable
range of variation. As can be observed by comparing the left- and right-hand panes of the figure,
where PYTHIA’s MECs are switched off and on respectively, this variation, labeled P (z) and shown
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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“Soft region” 
Renormalization-scale 
variations (blue) dominate

“Hard region” 
Non-singular variations 
(red) dominate

Example from Mrenna & PS, Automated Parton-Shower Variations in Pythia 8, 1605.08352

Can vary renormalisation scale and non-singular terms independently

Note: ME corrections were switched off for illustration. Would reduce red band, but not blue.

https://arxiv.org/abs/1605.08352


๏Consider a quark and anti-quark produced in e+e- annihilation

2) Hadronization and Jets

6

q q

q q

i) Initially Quarks separate at high velocity

ii) Colour flux tube forms between quarks

iii) Energy stored in the flux tube 
sufficient to produce new  pairsq̄q

iv) Process continues  
Jets of colourless hadrons 

⟹

q qq q



“Linear confinement” 
(From Lattice & Hadron Spectroscopy)

“Cornell potential”: 

 V(r) = −
4
3

αs

r
+ κr

๏Simplified (leading-NC) “colour flow” ➜ determine between which partons to set up confining potentials 

•   
๏Map to Strings: Quarks ➡ string endpoints; gluons ➡ “kinks” 

•System then evolves as a string world sheet  
•+ String breaks via spontaneous  pair creation (“Schwinger mechanism”)  hadrons 

๏Baseline string model formulated in continuum limit of asymptotically “long” strings:  
•  Belle II could provide extremely accurate constraints at the lower endpoint of the dynamical range? 
•  + test for small-system modifications  eg non-universal best-fit tune parameters

qq̄ →

ECM ≳ 10 GeV

⟷

Confinement in PYTHIA: The Lund String Model

7

“Les Houches Colour Tags”
Hadron

Hadron

Hadron



String Breaking

8

๏In “unquenched” QCD 
• The strings will “break” 
•Non-perturbative so can’t use  
•Model: Schwinger mechanism 

•Assume probability of string break constant per unit world-sheet area

g → qq̄ ⟹
Pg→qq̄(z)

String Break

q

M

P.  S k a n d s

String Breaks

๏In QCD, strings can (and do) break! 
•(In superconductors, would require magnetic monopoles) 
•In QCD, the roles of electric and magnetic are reversed 
•Quarks (and antiquarks) are “chromoelectric monopoles” 
•There are at least two possible analogies ~ tunneling:

18

Schwinger Effect

+

÷
Non-perturbative creation 
of e+e- pairs in a strong 
external Electric field

~E

e-

e+

P / exp

✓
�m2 � p2?

/⇡

◆

Probability from 
Tunneling Factor

( is the string tension equivalent)

C
A

N
O

N
IC

A
L

Hawking Radiation

M

~g

Non-perturbative creation 
of radiation quanta in a 
strong gravitational field

HORIZONHORIZON

Thermal (Boltzmann) Factor

P / exp

✓
�E

kBTH

◆

Linear Energy Exponent

A
LT

ER
N

AT
IV

E?

→ Gaussian suppression of high m⊥ = m2
q + p2

⊥

J. Schwinger, Phys. Rev. 82 (1951) 664

Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2

⊥/z)/z  0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

f(z), a = 0.5, b= 0.7

mT
2 = 0.25
mT

2 = 1
mT

2 = 4

time

spatial 
separation



Schwinger Case: the String Fragmentation Function

9

๏Schwinger  Gaussian  spectrum (transverse to string axis) & Prob(d:u:s) ≈ 1 : 1 : 0.2 
•The meson  takes a fraction  of the quark momentum,  
•Probability distribution in  parametrised by Fragmentation Function, 

⟹ p⊥
M z

z ∈ [0,1] f(z, Q2
HAD)

String Break

q

M

Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2

⊥/z)/z  0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

f(z), a = 0.5, b= 0.7

mT
2 = 0.25
mT

2 = 1
mT

2 = 4

time

spatial 
separation

leftover string, 
further string breaks 

Spacelike Separation from  

Observation: All string breaks are causally disconnected

Lorentz invariance  string breaks can be considered 
in any order. Imposes “left-right symmetry” on the FF

⟹

 FF constrained to a form with two free parameters,      
 & : constrained by fits to measured hadron spectra

⟹
a b

Lund Symmetric 
Fragmentation 

Function
f(z) ∝

1
z

(1 − z)aexp (−
b(m2

h + p2
⊥h)

z )
Supresses 

high-z hadrons
Supresses 

low-z hadrons



Constraining PYTHIA (in the  continuum)qq̄

10

๏We use a combination of Infrared Safe* and Infrared Sensitive observables 
•  Stereo Vision on perturbative and nonperturbative QCD respectively 

๏ Some overlap / interplay: IR Safe becomes Sensitive at low scales & IR Sensitive seeded by IR Safe. 

๏IR Safe Observables satisfy two simultaneous conditions 
•1) Soft Safe: observable does not change when adding soft partons/particles 

๏ E.g., adding infinitely soft gluons (perturbative), or soft pions (non-perturbative) 
•2) Collinear Safe: observable does not change when splitting a particle collinearly 

๏ E.g., doing a  or  splitting, or a  decay, in limit of zero opening angle. 
•➜ Hadronization and hadron decays suppressed by powers of  

๏Full Set of IR Safe Observables: 
๏ Event Shapes: typically Thrust Family, Linearised Sphericity Family, EECs, Angularities 
๏ Jet Rates: typically Durham kT resolutions (but other clustering algorithms also interesting) 
๏ Jet Structure: Jet Masses, Jet Broadenings, Jet Shapes 
๏ Sometimes done using Charged Tracks only, for best experimental resolution. 

⟹

g → gg g → qq̄ ρ → ππ

ΛQCD/Q

*Sometimes referred to as IRC safe



Constraining PYTHIA: IR Safe Observables (main examples)
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Figure 28: Hadronic Z decays at
p
s = 91.2GeV. The T , C, and D event-shape parameters, as

measured by L3 [26], for light-flavour (left) and b-tagged (right) events, respectively.
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Figure 28: Hadronic Z decays at
p
s = 91.2GeV. The T , C, and D event-shape parameters, as

measured by L3 [26], for light-flavour (left) and b-tagged (right) events, respectively.
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Figure 28: Hadronic Z decays at
p
s = 91.2GeV. The T , C, and D event-shape parameters, as

measured by L3 [26], for light-flavour (left) and b-tagged (right) events, respectively.
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Figure 29: Hadronic Z decays at
p
s = 91.2GeV. The BW and BT event-shape parameters, as

measured by L3 [26], for light-flavour (left) and b-tagged (right) events, respectively.
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 Question: could Belle II separate  out from  ?e+e− → γ* → cc̄ dd̄, uū, ss̄

Top Row: from PS et al., “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur.Phys.J.C 74 (2014) 8

Bottom Row: from mcplots.cern.ch

(at ) s ∼ mZ

https://arxiv.org/abs/1404.5630
http://mcplots.cern.ch


IR Sensitive Observables

12

๏Multiplicities, Spectra, and Correlations 
•Inclusive charged particles 
•Identified particles (rates and ratios). 
•+ correlations, with event multiplicity, with rapidity along jet axis, with … ? 
•  Strangeness correlations, baryon correlations, …  

๏Spectra 

•

Conventional absolute momentum fraction:   

•  But, even at ECM ~ 10 GeV, these hadrons are produced in jets;  
๏ Jets have longitudinal and transverse axes: 
๏ More information: rapidity spectra (along primary event/jet axis) : ,  
๏ And momentum transverse to it,  ; + Let 2nd axis define a plane  , 

xp =
2 |p |
ECM

dnch/dy dnPID/dy
dn/dp⊥ ⟹ p⊥in p⊥out



Main Examples of IR Sensitive Observables
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Figure 3: Hadronic Z decays at
p
s = 91.2GeV. Charged-particle multiplicity (left) and momentum-

fraction (right) spectra.

its large �? value, produce a narrower nCh spectrum, with in particular a smaller tail towards large
multiplicities. All the tunes produce a sensible momentum spectrum. The dip around |ln(x)| ⇠ 5.5
corresponds to the extreme soft-pion tail, with momenta at or below ⇤QCD. We did not find it possible
to remove it by retuning, since a smaller b parameter would generate significantly too high particle
multiplicities and a smaller �? would lead to conflict with the event-shape distributions.

A zoom on the high-momentum tail is provided by the left-hand plot in fig. 4, which shows a
comparison on a linear momentum scale, to a measurement by ALEPH [38] (now including Z ! bb̄
events as well as light-flavour ones). All the tunes exhibit a mild overshooting of the data in the region
0.5 < xp < 0.8, corresponding to 0.15 < | ln(x)| < 0.7, in which no similar excess was present in
the L3 comparison. We therefore do not regard this as a significant issue6 but note that the excess is
somewhat milder in the Fischer and Monash tunes.

Further information to elucidate the structure of the momentum distribution is provided by the
plot in the right-hand pane of fig. 4, which uses the same |ln(x)| axis as the right-hand plot in fig. 3
and shows the relative particle composition in the Monash tune for each histogram bin. (The category
“Other” contains electrons and muons from weak decays.) An interesting observation is that the
relatively harder spectrum of Kaons implies that, for the highest-momentum bins, the charged tracks
are made up of an almost exactly equal mixture of Kaons and pions, despite Kaons on average only
making up about 10% of the charged multiplicity.

6One might worry whether the effect could be due solely to the Z ! bb̄ events which are only present in the ALEPH
measurement, and if so, whether this could indicate a significant mismodeling of the momentum distribution in b events.
However, as we show below in the section on b fragmentation, the charged-particle momentum distribution in b-tagged
events shows no excess in that region (in fact, it shows an undershooting).
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Figure 5: Hadronic Z decays at
p
s = 91.2GeV. Identified-meson and -baryon rates, expressed as

fractions of the average charged-particle multiplicity.
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Figure 6: Hadronic Z decays at
p
s = 91.2GeV. K± and ⇤ momentum-fraction spectra.
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Figure 5: Hadronic Z decays at
p
s = 91.2GeV. Identified-meson and -baryon rates, expressed as

fractions of the average charged-particle multiplicity.

-4 -2 0

/d
ln

(x
)

K
> 

dn
K

1/
<n

-310

-210

-110

1

10
) (Combined)±x(K

Pythia 8.183
Data from ZPC66(1995)355, ZPC63(1994)181, EPJC5(1998)585 

LEP (A+D+O)
PY8 (Monash)
PY8 (Default)
PY8 (Fischer)

bins/N2
5%
χ

0.1±1.6 
0.0±1.4 
0.1±1.9 

V 
I N

 C
 I 

A 
R 

O
 O

 T

)
p

ln(x
-4 -2 0

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

0 1 2 3 4 5

ξ
/d

Λ
> 

dn
Λ

1/
<n

0

0.2

0.4

0.6
)]|0Λ|Ln[x(

Pythia 8.183
Data from EPJ C16 (2000) 613 

ALEPH
PY8 (Monash)
PY8 (Default)
PY8 (Fischer)

bins/N2
5%
χ

0.1±0.8 
0.1±1.5 
0.1±1.2 

V 
I N

 C
 I 

A 
R 

O
 O

 T

p
ξ

0 1 2 3 4 5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

Figure 6: Hadronic Z decays at
p
s = 91.2GeV. K± and ⇤ momentum-fraction spectra.
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Figure 7: Mean p? versus charged multiplicity for ⇡+, p, K+, ⇤, � and ⌅.

14

Figure 9: Particle yields as a ratio to pions for K+, �, p, ⇤, ⌃ and ⌅ after cuts.
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Bottom Right Plots: from “String Fragmentation with a Time-Dependent Tension”, N. Hunt-Smith & PS, Eur.Phys.J.C 80 (2020) 11

(at ) s ∼ mZ

Top Row: from PS et al., “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur.Phys.J.C 74 (2014) 8

https://arxiv.org/abs/2005.06219
https://arxiv.org/abs/1404.5630


PYTHIA & B Decays ̶ Recent collaboration with EVTGEN (M. Kreps, Warwick)

14

๏30% of B meson decays modelled as partonic transitions, with spectator 
•Passed back to PYTHIA for re-hadronisation (with same string parameters as at LEP). 

๏ How reliable is this modelling really? Not aware anyone has looked at that since org papers. 
•These tend to be high-multiplicity (multi-prong) modes 

๏ Rarely used as signals. But enter as backgrounds, and tagging modes?  
•Experimental constraints on these? Belle II, LHCb, ALICE … ? 

๏  Would like to discuss, if there is interest, what Belle II could do here?  

๏QED Radiative Corrections in B Decays 
•HERWIG and SHERPA have dedicated modules, based on “YFS” formalism  
•For PYTHIA, QED in hadron decays is normally done with PHOTOS 
•Now: looking at adapting the QED Multipole Shower Module from VINCIA 

๏ Native C++ and built-in in PYTHIA  thread-safe and trivial to parallelise 
๏ May be superior to YFS in some ways + modern shower formalism  matching, merging, …  
๏  Would this be interesting to Belle II ? 

→
⟹



QED Multipole Radiation Patterns
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๏Example: Quadrupole final state (4-fermion: )e+e+e−e−

e�

e+

e+

e�

z

x

y

Figure 1. An illustration of a 2e+2e� configuration where two pairs of nearby electron-positron
are moving into roughly opposite directions. The blue lines indicate antennae with positive sign
while the orange lines indicate antennae with negative signs. In this scenario the contributions to
the eikonal factor spanned between the pairs largely cancel, leaving only the positive contribution
inside the pairs.

to implement in a shower using the usual Sudakov veto algorithm [25–27]. Competing trial
emissions are generated in every sector using the appropriate local transverse momentum.
An additional veto is included that checks the condition imposed by the step function in
eq. (3.3).

This procedure in fact orders emissions with ordering variable

Q2 = min
�
Q2

xy

�
, (3.4)

which has the required property of ensuring that all soft and collinear regions are contained
in the limit Q2

! 0, while still allowing for the use of regular 2 ! 3 shower kinematics.
However, this algorithm may become prohibitively expensive in situations where the number
of charged particles in an event grows rapidly.

3.2 Pairing Algorithm

To tackle the large computational cost of the above algorithm, the parton-shower approxi-
mation eq. (2.7) may instead be replaced by

|Mn+1 ({p}, pj) |
2
⇡ 4⇡↵

X

[x,y]

Q2
[x,y]aEmit(sxj , syk, sxy)|Mn ({p̄}xy) |

2. (3.5)

The sum now runs over pairings [x, y] that have identical but opposite charge Q[x,y].
Eq. (3.5) trivially reduces to the correct collinear limits, but only contains a subset of
eikonal factors. By choosing a suitable method to pair up the charges, the missing in-
terference structure may however be approximated. To illustrate how this may be done,
Figure 1 shows a configuration of charges consisting of two boosted e+e� pairs moving in
opposite directions in space. In this situation, one pairing performs much better than the
other. Since the components of the pairs move in roughly the same direction, the charges

– 5 –

Soft Photon Emission:
[Dittmaier, 2000]

Opposite-charge pairs ➤ positive terms
Same-charge pairs ➤ negative terms

PS, Verheyen, 

Phys.Lett.B 811 (2020) 135878

[arXiv:2002.04939]

If there is interest, I have a few more slides about this in the back

https://arxiv.org/abs/2002.04939


Tuning
PART 2



Tuning: PROFESSOR ̶ a powerful tool for (semi)automated tuning

17

Tuning procedure in Professor (1D, 1Bin)

1 Random sampling: N parameter points in n-dimensional space

2 Run generator and fill histograms

3 For each bin: use N points to fit interpolation (2nd or 3rd order
polynomial)

4 Construct overall (now trivial) c2 ⇡ Âbins
(interpolation�data)2

error2

5 and Numerically minimize pyMinuit, SciPy

p

bbb b

best p

data bin

bin interpolation

Professor 4 / 16

๏Inspired by idea pioneered by DELPHI (Hamacher et al., 1995):  
•Bin-wise interpolation of MC generator response and  minimization  
• -order polynomials account for parameter correlations. 

χ2

2nd

Modern Python Package  
with much more functionality, 

tutorials, etc. 
https://professor.hepforge.org/

Pr
of
es
so
r  

Tu
ni
ng

 p
ro
ce

du
re

https://professor.hepforge.org/


PROFESSOR ̶ Caveats
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๏Some Dangers: 
•Overfitting: very precisely measured data points can generate large  values even if 
MC gets within what one would naively consider “reasonable” agreement 

๏ Fit reacts by sacrificing agreement elsewhere (typically in tails) to improve  in peaks. 
๏ PROFESSOR now has facility to include a “sanity limit” (e.g., 5%) “theory uncertainty”  
๏ ➤ Fit not rewarded (much) for improving agreement beyond that point. More freedom in tails. 
๏ Also tends to produce  values ~ unity  better uncertainty bands? 

•Incompatibilities: model may be unable to agree with (some part of) a given 
measurement  

๏ Fit reacts by desperately trying to reduce order-of-magnitude differences in bins it shouldn’t 
have been asked to fit in the first place, at cost of everything else ➤ total garbage. 

๏ Choose measurements carefully — within domain of applicability of physics model 
๏ + PROFESSOR now has facility to not penalise  beyond some max deviation.

χ2

χ2

χ2
5% →

χ2

• I would (by now) recommend using PROFESSOR. Wisely. 
A. Buckley et al., Eur.Phys.J.C 65 (2010) 331 https://professor.hepforge.org/



Some Helper Tools
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๏Wouldn’t it be nice if there was a tool: 
•That could automatically detect correlations between parameters and observables. 
•And tell you which “groups” they fall into naturally : which parameter sets you should 
ideally tune together, and which are more nicely factorised. 

๏This is (at least partly) what the tool AutoTunes does 
•I won’t have time to discuss that today, but I think it looks promising 
•I encourage you to study it and use it 

๏You may also be interested in Apprentice 
•Variance reduction to semi-automate how to weight observables & bins

Bellm, Gellersen, Eur.Phys.J.C 80 (2020)

Krishnamoorthy et al., EPJ Web Conf. 251 (2021) 03060



Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Charged multiplicity 1.061+0.089

�0.096 0.518+0.011
�0.012 0.410+0.017

�0.016 43.4/104
Scaled momentum 0.598+0.053

�0.049 0.5295+0.0070
�0.0072 0.324+0.012

�0.012 70.7/180
� 0.61+0.32

�0.23 0.517+0.035
�0.039 0.344+0.067

�0.062 52.4/70
⇡0 1.22+0.18

�0.16 0.566+0.014
�0.014 0.340+0.020

�0.020 31/117
⇡± 0.757+0.082

�0.073 0.5029 0.0098
�0.0099 0.336+0.011

�0.011 72.5/205
T 1.34+0.27

�0.20 0.498+0.018
�0.019 0.241+0.022

�0.023 124/194
C-parameter 1.65+0.35

�0.42 0.621+0.053
0.038 0.390+0.067

�0.043 23.4/71
�, ⇡0,± (T1) 0.821 0.065

�0.060 0.5291+0.0057
�0.0057 0.3304+0.0060

�0.0060 321/514
All (T2) 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 4. Results of tunes performed separately to measurements of charged multiplicity, charged
scaled momentum, � spectra, ⇡0 spectra, ⇡± spectra, Thrust distribution and C-parameter. Results
of tunes combining measurements of �,⇡± and ⇡0 (T1) or all measurements (T2) are also reported.

Figure 13. Results of tunes performed separately to measurements of � spectra (red), ⇡± spec-
tra (magenta), ⇡± spectra (green), Thrust distribution (yellow), C-parameter (blue) and charged
particles scaled momentum (black). Measurements from Aleph (A), Delphi (D), Opal (O), L3
(L) and Sld (S) are used. The contours corresponding to a one, two and three standard deviations
are also shown.

5.2 Uncertainties

After discussing in details the results of the tuning and independent fits, we move to the
question of QCD uncertainties. Those can be separated into the perturbative uncertain-
ties, related to the parton showers evolution, and the non-perturbative ones, related to the
determination of the parameters of the fragmentation model. Uncertainties on the non-
perturbative part, are specific to the chosen model and the data used to constrain them,
leaving more ambiguities in the uncertainty estimate.

Uncertainties on parton showering in Pythia8 are estimated using the automatic setup
developed in [37] which aims for a comprehensive uncertainty bands by variation the cen-
tral renormalization scale by a factor of 2 in the two directions with a full NLO scale
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Different observables

Parameter without 5% with 5%

StringPT:Sigma 0.3151 +0.0010
�0.00010 0.3227+0.0028

�0.0028

StringZ:aLund 1.028+0.031
�0.031 0.976+0.054

�0.052

StringZ:avgZLund 0.5534+0.0010
�0.0010 0.5496+0.0026

�0.0026

�2/ndf 5169/963 778/963

Table 2. Results of tunes using the new parametrization of the Lund fragmentation function
in terms of the a and hz⇢i parameters. The second (third) column shows the result before (after)
including a flat 5% uncertainty to the theory prediction.

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Aleph 0.827+0.066

�0.062 0.5447+0.0044
�0.0044 0.3105+0.0045

�0.0045 284.7/382
Delphi 0.67+0.11

�0.09 0.5290+0.0062
�0.0063 0.3110+0.0062

�0.0061 82/113
L3 1.186+0.093

�0.10 0.5708+0.0054
�0.0055 0.3303+0.0072

�0.0072 98/155
Opal 0.55 +0.11

�0.095 0.511+0.011
�0.012 0.318+0.013

�0.013 82.4/184
Sld 0.95+0.12

�0.11 0.5271+0.0097
�0.010 0.327+0.017

�0.017 34.4/116
COMBINED 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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Different experiments

Practical Example: Uncertainties on Dark-Matter Annihilation Spectra
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๏Compare different generators?  
•E.g., HERWIG  PYTHIA  
•Problem: tuned to ~ same data  
•Difference not guaranteed to span genuine uncertainties 

๏Instead, did parametric refittings of LEP data 
within PYTHIA’s modelling 

•Simple sanity limit / overfit 
protection / tension resolution:  

๏ Add blanket 5% baseline  
uncertainty  

•(+ exclude superseded 
measurements) 

๏+ Universality Tests:

−

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

DM

DM

Jets

Parameter without 5% with 5%

StringPT:Sigma 0.3151 +0.0010
�0.00010 0.3227+0.0028

�0.0028

StringZ:aLund 1.028+0.031
�0.031 0.976+0.054

�0.052

StringZ:avgZLund 0.5534+0.0010
�0.0010 0.5496+0.0026

�0.0026

�2/ndf 5169/963 778/963

Table 2. Results of tunes using the new parametrization of the Lund fragmentation function
in terms of the a and hz⇢i parameters. The second (third) column shows the result before (after)
including a flat 5% uncertainty to the theory prediction.

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Aleph 0.827+0.066

�0.062 0.5447+0.0044
�0.0044 0.3105+0.0045

�0.0045 284.7/382
Delphi 0.67+0.11

�0.09 0.5290+0.0062
�0.0063 0.3110+0.0062

�0.0061 82/113
L3 1.186+0.093

�0.10 0.5708+0.0054
�0.0055 0.3303+0.0072

�0.0072 98/155
Opal 0.55 +0.11

�0.095 0.511+0.011
�0.012 0.318+0.013

�0.013 82.4/184
Sld 0.95+0.12

�0.11 0.5271+0.0097
�0.010 0.327+0.017

�0.017 34.4/116
COMBINED 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363


๏Same done for antiprotons, positrons, antineutrinos  
•Tables with uncertainties available on request. Also the spanning tune parameters of course.

Practical Example: Uncertainties on Dark-Matter Annihilation Spectra
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Main Contact: adil.jueid@gmail.com
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Figure 14. Results of tunes performed separately to each of the observables. The weighted
average of the tunes to the individual measurements is shown with a black line. A green shaded
area indicated the 68% CL interval on the parameters.

are however still found to provide small uncertainties which cannot be interpreted as con-
servative. The uncertainty on the parameters of the Lund fragmentation function are very
small (below the one percent level) and inconsistent with the uncertainties of the data used
in the tune6. In Table 7 we also show the uncertainties from QCD on the photon spectra in
the peak region for �� ! gg for m� = 25 GeV where the nominal values of the parameters
correspond to the result of T2 tune and the corresponding eigentunes are shown in Table
5.

Therefore, we use an alternative method to estimate the uncertainty on the Lund
fragmentation function’s parameters. We, first, make a fit each measurement. Thus, for N

measurements, we get N best-fit points for each parameter. We then take the 68% CL errors

6We also checked their impact on the gamma-ray spectra in different final states and for different DM
masses including the ones corresponding to the pMSSM best fit points and have found that the bands
obtained from the eigentunes are negligibly small.
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Weighted Average: good 
consistency across observables

10-point variations ➤ Fairly 
convincing uncertainty bands?

x� (dN/dx�)T2 ± �had. ± �shower

0.00125 7.59+0.05%
�0.0%

+8.1%
�4.8%

0.002 13.79+0.18%
�0.26%

+8.3%
�4.9%

0.003 22.29+0.13%
�0.0%

+8.2%
�4.9%

0.005 31.95 +0.2%
�0.04%

+8.1%
�4.8%

0.008 40.74+0.12%
�0.05%

+7.7%
�4.6%

0.0125 45.83+0.08%
�0.09

+7.1%
�4.3%

0.02 45.01+0.13%
�0.02

+6.5%
�4.0%

0.03 39.43+0.13%
�0.0%

+5.2%
�3.3%

0.05 30.73 +0.0%
�0.15%

+3.1%
�2.1%

0.08 21.36 +0.0%
�0.06%

+0.4%
�0.5%

0.125 12.98+0.13%
�0.23%

+1.6%
�3.0%

Table 7. Scaled momentum of photons in the process �� ! gg for m� = 25 GeV where only
the peak region of the spectra is shown. In this table, we show the predictions from the weighted
tune denoted by T2 (the central values of the parameters and their eigentunes are shown in Tables
2 and 5). The 68% CL on hadronisation parameters are shown as first errors for each bin while
uncertainties due to shower variations are the second errors.
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Figure 15. Photon energy distribution for dark matter annihilation into W+W� with m� = 90.6
GeV (left) and into tt̄ with m� = 177.6 GeV (right). In the two cases, the result corresponding to
the new tune is shown in black line. Both the uncertainties from parton showering (gray bands)
and from hadronisation (blue bands) are shown. Predictions from Herwig7 are shown as a gray
solid line.

(gray bands) and hadronisation (blue bands) uncertainties. We can see that the predictions
from Pythia and Herwig agree very well except for E� 6 2 GeV where differences can
reach about 21% for E� ⇠ 0.4 GeV. Furthermore, one can see that uncertainties can be
important for both channels. Particularly, in the peak region which corresponds to energies
where the photon excess is observed in the galactic center region. Indeed combining them
in quadrature assuming the different type of uncertainties are uncorrelated, they can go

– 24 –

Ex
pe

ns
iv

e?

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

mailto:adil.jueid@gmail.com
https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363


๏Problem: 
•Given a colour-singlet system that (randomly) broke up into a specific set of hadrons: 

•What is the relative probability that same system would have resulted, if the 
fragmentation parameters had been different?  
•Would this particular final state become more likely ( )? Or less likely ( ) 
•Crucially: maintaining unitarity  inclusive cross section remains unchanged! 

๏August 2023: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan 
๏ [Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459]   
๏ Method is general; demonstrated on variations of the 7 main parameters governing 

longitudinal and transverse fragmentation functions in PYTHIA 8 
๏ https://gitlab.com/uchep/mlhad-weights-validation

w′ > 1 w′ < 1
⟹

New: Automated Hadronization Uncertainties

22

https://arxiv.org/abs/2308.13459
https://gitlab.com/uchep/mlhad-weights-validation


Examples with Pythia 8
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๏Longitudinal Fragmentation Function (Lund Symmetric FF)

๏ [Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459]   
๏

z
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samples. Finally, in section 4, we summarize our findings and draw conclusions.

2 Method

An event produced by an event generator, like Pythia 8, begins from a small number
of partons that evolve through various stages. At each stage the color quantum numbers
are tracked in the large color Nc limit, such that each new color is assigned a new color
index. In this limit, only planar color flows are retained, and colored partons can be
assigned a unique pair of integers to represent color and anticolor. After the perturbatively-
motivated evolution of the parton shower, one of the last stages in the event development
is hadronization. Prior to this step, the collection of quarks, antiquarks, and gluons can
be partitioned into color-singlet objects (strings) based on their color quantum numbers.
The Lund string model of hadronization [5,13,14] is then applied to reduce strings into the
observed hadrons. The string represents a flux tube of the non-perturbative strong force
between a quark and an antiquark that successively breaks into hadrons, represented by
stable oscillating string states characterized by their four-momentum ph and flavor. The
full probability of a given fragmentation can be split into a flavor selection, a transverse
momentum sampling, and a longitudinal momentum sampling, which are all combined to
ensure a physical emission. A detailed discussion of the Lund fragmentation function as
implemented in Pythia 8 can be found in ref. [15]. Here, we summarize those elements
needed for the uncertainty estimation of the hadronization.

The Lund fragmentation function, or scaling function, determines the probability for
a hadron to be emitted with longitudinal lightcone momentum fraction z related to the
z-component of the hadron momentum ph,z, hadron energy Eh, and total string energy
Estring via the relation z = (ph,z + Eh)/Estring, valid in the rest-frame of the string for
hadron emitted in the +z direction. The fragmentation function has the following form:

f(z) /
1

z1+rQbm2
Q

(1� z)a exp

✓
�
bm2

?
z

◆
, (1)

where Q is the quark flavor, mQ is the quark mass, m2
? ⌘ m2 + p2T is the square of the

transverse mass, m is the hadron mass, pT is the transverse momentum of the hadron,
and rQ, a, and b are constant parameters fixed by fits to experimental data.1 The Bowler
modification z�rQbm2

Q in eq. (1) is only included for heavy quarks, i.e., rQ = 0 unless
Q 2 {c, b} [16]. Pythia 8 also allows for modifications to the a-parameter to be used in
splittings involving strange quarks s or diquarks D, parameterized by the form a0i = a+�ai,
where �ai represents an adjustable parameter2 within Pythia 8 with i 2 {s,D} (the form
of f(z) is also modified from (1), accounting for the fact that the emitted quarks can be of
a different flavor than the endpoints of the original string). The maximum of f(z), denoted
fmax, can be determined analytically for a given set of input parameter values, denoted ci.
Sampling z from f(z) is done by selecting a pseudo-random number x until one satisfies
x < f(z)/fmax  1, a method known as the accept-reject algorithm, further described in
section 2.1.

The transverse momentum pT of each emitted hadron is sampled via the two compo-
nents, �px = phadron

x � pstring
x and �py = phadron

y � pstring
y . In the default model of Pythia

1The default parameter names and values as implemented in Pythia 8 are StringZ:aLund = 0.68,
StringZ:bLund = 0.98, StringZ:rFactC = 0, and StringZ:rFactB = 0.855 for a, b, rc, and rb, respec-
tively.

2The default parameter names and values as implemented in Pythia 8 are StringZ:aExtraSQuark =

0 and StringZ:aExtraDiquark = 0.97, for s and D respectively.

3

 ~ scaled light-cone hadron momentum fractionf(z)
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where the dependence on the chosen parameter values ci has been suppressed for brevity.
Summing the geometric series in A gives,

p(z) =
Paccept(z)

1�A
=

Paccept(z)Z 1

0
dz0 Paccept(z

0)

= P (z) , (5)

showing that the algorithm yields the desired distribution. The exact value of bP , provided
that Paccept  1, only affects the efficiency of the algorithm; the further bP is from the
actual maximum of P (z, ci), the less efficient the sampling.

2.2 Modified Accept-Reject Algorithm

Next, we present a modification of the accept-reject algorithm that assigns appropriate
weights to the existing event, depending on how the parameter values ci are varied. We
refer to the original set of parameter values ci as the baseline and the new set c0i as the
alternative. If the event generated with the baseline parameters has weight w (typically
in Pythia 8, w = 1), the modified accept-reject algorithm calculates the weight w0 that
corresponds to the alternative values of the parameters. If w0 > w, the event is more
probable given the alternative parameter values; if w0 < w, it is less probable.

For the calculation of the weight w0, one needs to keep track of all the trial z values
in the standard accept-reject algorithm. For each z that was rejected, w is multiplied
by R0

reject(z), while for the accepted value of z, the multiplication is by R0
accept(z). Here,

R0
accept(z) is the ratio of alternative and baseline acceptance probabilities,

R0
accept(z) =

P 0
accept(z)

Paccept(z)
=

P 0(z)

P (z)
, with P 0

accept(z, c
0
i) =

P 0(z, c0i)
bP

, (6)

while R0
reject(z) is the ratio of the alternative and the baseline rejection probabilities,
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Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.
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From Data Analysis ➟ Validation of (current & future) MC Event Generators
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Experimental Measurement

Authors prepare & 
submit records to:

(HEPData is funded by the UK STFC and is 
based at the IPPP at Durham U.)Data Preservation (for HEP): HEPData

How to compare 
(unambiguously and exactly)  

to event generators? 

(e.g., to validate future ones) 

Need Analysis Preservation too

Analysis Preservation (for HEP): Rivet (Rivet is developed by the CEDAR 
project, also based in the UK)

Authors prepare & 
submit code to:

https://www.ukri.org/councils/stfc/
http://www.ippp.dur.ac.uk/


When showing plots from the original paper:
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•“Yes but this has been corrected in version X of that generator” 
•“But this other tune or MC that you didn’t compare to does better” 
•“Does the model shown there also describe correctly this other important observable?” 
•…

•Instant answers would be convenient for faster & better informed discussions!
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Figure 5: Double-differential prompt K0
S production cross-section in pp collisions at

√
s =

0.9 TeV as a function of transverse momentum pT and rapidity y. The points represent LHCb
data, with total uncertainties shown as vertical error bars and statistical uncertainties as tick
marks on the bars. The histograms are predictions from different settings of the PYTHIA gen-
erator (see text). The lower plots show the MC/data ratios, with the shaded band representing
the uncertainty for one of these ratios, dominated by the uncertainty on the measurements (the
relative uncertainties for the other ratios are similar).

ranges in rapidity or pseudo-rapidity. The ability of LHCb to contribute measurements
that extend the kinematic range towards high rapidities and very low pT is apparent.

8 Conclusions

Studies of prompt K0
S production at

√
s = 0.9 TeV have been presented, made with the

LHCb detector using the first pp collisions delivered by the LHC during 2009. The data
sample used corresponds to an integrated luminosity of 6.8± 1.0 µb−1, a value which has
been determined using measurements of the beam profiles that exploit the high precision
of the VELO. This is the most precise determination of the luminosity for the 2009 LHC
pilot run, only limited by the uncertainties on the beam intensity.

The differential cross-section has been measured as a function of pT and y, over a range
extending down to pT less than 0.2 GeV/c, and in the rapidity interval 2.5 < y < 4.0, a
region that has not been explored in previous experiments at this energy. These results
show reasonable consistency with expectations based on the PYTHIA 6.4 generator, and
should provide valuable input for the future tuning of Monte Carlo generators.
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LHC@home/Test4Theory
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๏2010: LHC@home developers approached the CERN Theory Group 
•Could we propose a simple test application for embedding physics applications in a 
Virtual Machine (CernVM) for running on the LHC@home volunteer cloud? 

๏PYTHIA: simple to build (no external libs), small footprint, … 
•Would not previously have been able to run on a volunteer-cloud environment:  

๏ No native Windows support, nor much interest (or manpower) to develop that 
๏ Small group of physicists; main (only) goal (& grant funding) = physics research 

๏Virtualisation factorised the problem:  
•Physics application just saw a (configurable) standard Linux environment (now CentOS) 

๏Became the Test4Theory project, the world’s first virtual volunteer cloud 
•Run event generators  RIVET and display results at mcplots.cern.ch →

http://mcplots.cern.ch


MCPLOTS ̶ New Look Coming Soon     

27

Preview at mcplots-dev.cern.ch

Work in Progress: A. Korneeva, A. Karneyeu, PS

http://mcplots-dev.cern.ch
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Preview at mcplots-dev.cern.ch

Work in Progress: A. Korneeva, A. Karneyeu, PS

http://mcplots-dev.cern.ch
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Preview at mcplots-dev.cern.ch

Select individual RIVET analysis Or process category

Work in Progress: A. Korneeva, A. Karneyeu, PS

http://mcplots-dev.cern.ch


MCPLOTS ̶ New Look Coming Soon
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Select between all available 
MC generators & versions

Work in Progress: A. Korneeva, A. Karneyeu, PS



MCPLOTS ̶ New Look Coming Soon
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Work in Progress: A. Korneeva, A. Karneyeu, PS

Direct access to all generator 
cards, data points, MC points, 

journal paper, etc

MCPLOTS = Gitlab repositoty 

You can clone it, implement new analyses, etc. 

Could be adapted with suite of Belle II 
comparisons? 

Main contact: natalia.korneeva@cern.ch

mailto:natalia.korneeva@cern.ch
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๏Transverse Fragmentation Function (Gaussian) 
SciPost Physics Submission

8, these follow a product of Gaussian distributions for px, py [17]:

P (�px,�py,�pT ) =
1

2⇡�2
pT

exp

✓
�
(�px)2 + (�py)2

2�2
pT

◆
, (2)

where the width parameter �pT is such that E[(�px)2] = E[(�py)2] = �2
pT and thus

E[(pkick
T )2] = 2�2

pT , where pkick
T is the transverse momentum kick, related to the hadron

transverse momentum via conservation of momentum.3 Gaussian distributions can be
sampled with complete efficiency, e.g., using the Box–Muller transform [18].

Our key interest is to calculate uncertainties arising from different choices of the pa-
rameters a, a0s, a0D, b, rc, rb, and �pT as they enter into eqs. (1) and (2). In the following,
we first review the accept-reject algorithm so as to later introduce a modified version of it,
best suited for the uncertainty estimation on the parameters of eq. (1). We also explain
how to perform uncertainty estimation for �pT by taking advantage of the direct sampling
from eq. (2).

It should be noted that the hadronization algorithm described above is used while the
mass of the remaining string is sufficiently large, such that suitable phase space exists to
produce a hadron and a remaining string. When the remaining string reaches a sufficiently
low mass, a specialized splitting is performed where two hadrons are produced without
a remaining string, rather than a hadron and the remaining string [19]. However, this
splitting is not always successful; if the remaining string has an m? smaller than the
summed m? of the two hadrons, then the entire hadronization of the string is rejected,
and started over. In principle, we do not account for this possible final rejection in our
modified accept-reject algorithm, since any effect from this should only be noticeable when
variations of the parameters from their default values are large, in which case, the support
of the underlying distribution will also not be sufficient.

2.1 Standard Accept-Reject Algorithm

The accept-reject algorithm can be used to sample a probability distribution when the
maximum value of the probability distribution, or a reliable overestimate thereof, is known.
The algorithm for sampling the probability distribution P (z, ci) begins by defining an
acceptance probability Paccept(z, ci) for a trial value of z,

Paccept(z, ci) ⌘
P (z, ci)

bP
 1 . (3)

Both the acceptance probability Paccept(z, ci) and the probability distribution P (z, ci) de-
pend on a set of parameter values ci, that we will later vary. The constant bP is cho-
sen so that the relation in eq. (3) is satisfied; it can be either the analytic maximum or
a numerically estimated overestimate. A trial value for z is accepted only if Paccept is
larger than a random uniform variate. If the trial value of z is rejected, with probability
Preject = 1� Paccept, a new trial z is then selected. The algorithm continues until a given
z value is accepted. That is, in the standard accept-reject algorithm, the value of z is
selected with probability p given by the product of the final accept probability times a
factor accounting for all of the rejected trials:

p(z) = Paccept(z)
1X

n=0

An , where A =

Z 1

0
dz0

�
1� Paccept(z

0)
�
, (4)

3Within Pythia 8, �pT is set with the parameter name StringPT:sigma.
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Reweighting Methodology: 
For each pT (Box-Muller transform):
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as desired.
A few considerations are worth mentioning. As in the case of parton-shower variations,

the modified rejection ratio in eq. (7) is inversely proportional to the difference P̂ �P and
can become large if P̂ ' P , leading to large weights. It is thus advantageous for P̂ to not
approximate the maximum value of P (z, ci) too closely, but to be larger by an O(1) factor.
In practice, multiplying P̂ by a factor of ten typically leads to stable results.4 The final
event weight w0 can also become large in cases when the baseline and alternative probability
distributions have limited overlap, i.e., the baseline distribution does not provide proper
support for the alternative distribution. A good indicator of the fidelity of the reweighting
is the weight sum

P
iw

0
i (or, equivalently, the mean weight) or the effective number of

events (
P

iw
0
i)
2/

P
iw

02
i . If the mean event weight is not near unity, or if the effective

number of events is significantly lower than the actual number of simulated events, care
should be taken when interpreting the weighted results.

2.3 Variation Details

Currently, we have implemented variations for the a, b, rc, and rb parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
�pT of eq. (2). The variation weight for one selection of �pT does not require the use of the
accept-reject algorithm but can be calculated directly using the Box–Muller transform:

w0 =
�2

�02 exp

✓
�

✓
�2

�02 � 1

◆◆
, (11)

where  = (n2
1 + n2

2)/2 and ni are normally distributed random variates.
The two event weights arising from variations in eqs. (1) and (2) can be combined into

a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P (�px,�py) and P (z|�px,�py), i.e., P (�px,�py) does not depend upon
z. However, variations of the parameters of f(z) must be considered as a group. While a
variation of the a parameter for a fixed b parameter can be calculated and vice versa, the
product of weights from these two calculations is not equivalent to varying both a and b
simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.
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simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.

6

๏ [Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459]   
๏
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Figure 4: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter �pT is (top) explicitly set to different
values, or (bottom) when the parameter �pT is varied using different methods.
In the top panel, the lower row shows the ratios of the distributions generated
with various values of �pT to that generated with �pT = 0.350. In the bottom
panel, the distributions labeled e were generated with the value of the parameter
�pT explicitly set to (left) 0.283 and (right) 0.360. The distributions labeled w0

are all taken from the same sample generated with �pT = �base
pT = 0.350, but

with different sets of alternative event weights, calculated using the accept-reject
algorithm applied according to the alternative values of �pT . The bottom row
shows the ratios of the latter distributions to the former.
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1. Types of (QED) Showers

34
Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.
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Beyond 2-body Systems: QED Multipoles

35

๏PYTHIA QED 
๏ Determines a “best” set of dipoles. No genuine multipole effects. 
๏ I.e., interference beyond dipole level only treated via “principle of maximal screening” 
๏ Works as a parton shower evolution (+ MECs) ➤ interleaved with QCD, MPI, …  

๏YFS QED [Yennie-Frautschi-Suura, 1961 ➤ several modern implementations] 
๏ Allows to take full (multipole) soft interference effects into account 
๏ “Scalar QED”; no spin dependence. 
๏ I.e., starts from purely soft approximation; collinear terms not automatic 
๏ Is not a shower; works as pure afterburner, adding a number of photons to a final state with 

predetermined kinematics; no interleaving 

๏VINCIA QED [Kleiss-Verheyen, 2017 ➤ Brooks-Verheyen-PS, 2020] 
๏ Allows to take full (multipole) soft interference effects into account 
๏ Not limited to scalar QED; includes spin dependence 
๏ I.e., starts from antenna approximation; including collinear terms 
๏ Works as a parton shower evolution; can be interleaved (+ MECs).



What’s the problem?
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๏Example: Quadrupole final state (4-fermion: )e+e+e−e−

e�

e+

e+

e�

z

x

y

Figure 1. An illustration of a 2e+2e� configuration where two pairs of nearby electron-positron
are moving into roughly opposite directions. The blue lines indicate antennae with positive sign
while the orange lines indicate antennae with negative signs. In this scenario the contributions to
the eikonal factor spanned between the pairs largely cancel, leaving only the positive contribution
inside the pairs.

to implement in a shower using the usual Sudakov veto algorithm [25–27]. Competing trial
emissions are generated in every sector using the appropriate local transverse momentum.
An additional veto is included that checks the condition imposed by the step function in
eq. (3.3).

This procedure in fact orders emissions with ordering variable

Q2 = min
�
Q2

xy

�
, (3.4)

which has the required property of ensuring that all soft and collinear regions are contained
in the limit Q2

! 0, while still allowing for the use of regular 2 ! 3 shower kinematics.
However, this algorithm may become prohibitively expensive in situations where the number
of charged particles in an event grows rapidly.

3.2 Pairing Algorithm

To tackle the large computational cost of the above algorithm, the parton-shower approxi-
mation eq. (2.7) may instead be replaced by

|Mn+1 ({p}, pj) |
2
⇡ 4⇡↵

X

[x,y]

Q2
[x,y]aEmit(sxj , syk, sxy)|Mn ({p̄}xy) |

2. (3.5)

The sum now runs over pairings [x, y] that have identical but opposite charge Q[x,y].
Eq. (3.5) trivially reduces to the correct collinear limits, but only contains a subset of
eikonal factors. By choosing a suitable method to pair up the charges, the missing in-
terference structure may however be approximated. To illustrate how this may be done,
Figure 1 shows a configuration of charges consisting of two boosted e+e� pairs moving in
opposite directions in space. In this situation, one pairing performs much better than the
other. Since the components of the pairs move in roughly the same direction, the charges

– 5 –

Why was this not done as a shower before?  
The orange terms are negative ➤ negative weights (+ big cancellations) 

YFS gets around that by not being formulated as a shower (& no spin dependence) 
Utilises that the sum is always non-negative.
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What does VINCIA do differently?
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opposite directions in space. In this situation, one pairing performs much better than the
other. Since the components of the pairs move in roughly the same direction, the charges

– 5 –

Sectorize phase space: for each possible photon emission kinematics , find the 2 
charged particles with respect to which that photon is softest ➤ “Dipole Sector” 

Use dipole kinematics for that sector, but sum all the positive and negative antenna 
terms (w spin dependence) to find the coherent emission probability. 

pγ

PS, Verheyen, 

Phys.Lett.B 811 (2020) 135878

[arXiv:2002.04939]

https://arxiv.org/abs/2002.04939


Further Details
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๏Antenna phase-space factorisation is exact, also for massive particles 
•+ Universal mass corrections are included in the eikonals 
•➤ Should have extremely faithful representation of “dead cone” effect (radiation from 
massive particles strongly damped for ) 

๏Also automatically includes  splittings (not in PHOTOS? YFS?) 

๏➤ First steps towards application of VINCIA QED to Hadron Decays  
•Honours project of Giacomo Morgante (Monash, 2023, in collaboration with Warwick) 

๏+ Can incorporate Matrix-Element Corrections 
•Not implemented yet. Techniques known; worked out focusing on QCD 
•Will affect tails of hard radiation (process-dependent non-singular terms), so this is potentially 
an important still missing feature. Also: Form Factors, VMD contributions, BRs, …  

๏+ Can be interleaved with event evolution, e.g., with Resonance Decays

θγ ≲ E/m

γ → e+e−, μ+μ−, …

[Gehrmann-de Ridder, Ritzmann, PS, 2012]

[Giele, Kosower, PS, 2011, + more recent]


