

MPI in PYTHIA 1. Brief overview 2. Color reconnection and the top mass

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden

MPI@LHC 2014, Krakow, 3–7 November 2014

1987: the (almost) original PYTHIA model

- Seek unified description of hard jets, UE and MB.
- Perturbative origin ⇒ p⊥ d.o.f. essential (unlike multi-Pomeron models at the time).
- Screening $\Rightarrow dp_{\perp}^2/p_{\perp}^4 \rightarrow dp_{\perp}^2/(p_{\perp}^2 + p_{\perp 0}^2)^2$ with $p_{\perp 0} \approx 1.5 - 2 \text{ GeV} \Rightarrow \text{finite MPI number.}$
- p_{\perp} -ordered generation, Sudakov/shower style.
- Hardest MPI standard PDFs, softer modified.
- Tuneable impact-parameter picture.
- Colour reconnection needed.

Makes use of existing PYTHIA/JETSET components, such as

- Lund string fragmentation, and
- initial- and final-state parton showers.

TS & M. van Zijl, Phys.Rev. D36 (1987) 2019

1987: the experimental evidence

MPI signals included

- width of charged multiplicity,
- forward–backwards correlations, and
- jet pedestal effect:

CR signal from $\langle p_{\perp} \rangle (n_{\rm ch})$:

FIG. 27. Average transverse momentum of charged particles in $|\eta| < 2.5$ as a function of the multiplicity. UA1 data points (Ref. 49) at 900 GeV compared with the model for different assumptions about the nature of the subsequent (nonhardest) interactions. Dashed line, assuming $q\bar{q}$ scatterings only; dotted line, gg scatterings with "maximal" string length; solid line gg scatterings with "minian".

Today: basic generation of MPI

- Basic ideas remain: screening, p⊥-ordered generation, all events contain at least one perturbative interaction.
- Still allow for many different impact-parameter profiles.
- Screening $p_{\perp 0}$ energy-dependent for post-HERA PDFs.
- Two \Rightarrow three basic generation possibilities:
 - 0 no separate hard interaction \Rightarrow minbias events,
 - 1 start from fixed hard interaction \Rightarrow underlying event, or
 - 2 select two hard interactions, e.g. W^-W^- .
- More sophisticated rescaled PDF's, taking into account momentum and flavour correlations.
- Possible to kick out several valence quarks (⇒ junctions), and to have more complicated bream remnants.
- Each MPI associated with its ISR and FSR activity.
- MPI machinery also for diffractive events.

Interleaved evolution

- MPI ordered in p_{\perp} from onset.
- Now also p_{\perp} -ordered parton showers for ISR and FSR.
- \Rightarrow Allows interleaved evolution for MPI, ISR and FSR:

$$\begin{aligned} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\boldsymbol{p}_{\perp}} &= \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}}\right) \\ &\times \exp\left(-\int_{\boldsymbol{p}_{\perp}}^{\boldsymbol{p}_{\perp}\max} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'}\right) \mathrm{d}\boldsymbol{p}_{\perp}'\right) \end{aligned}$$

Ordered in decreasing p_{\perp} using "Sudakov" trick.

Corresponds to increasing "resolution" of partonic final state: smaller p_{\perp} fill in details of basic picture set at larger p_{\perp} .

Same order in α_{s} , \sim same propagators, but

- one PDF weight less \Rightarrow smaller σ
- one jet less \Rightarrow QCD radiation background 2 \rightarrow 3 larger than 2 \rightarrow 4
- \Rightarrow will be tough to find direct evidence.

Rescattering grows with number of "previous" scatterings:

	Tevatron		LHC	
	Min Bias	QCD Jets	Min Bias	QCD Jets
Normal scattering	2.81	5.09	5.19	12.19
Single rescatterings	0.41	1.32	1.03	4.10
Double rescatterings	0.01	0.04	0.03	0.15

An x-dependent proton size

Reasonable to assume that low-x partons are more spread out:

$$\rho(r,x) \propto \frac{1}{a^3(x)} \exp\left(-\frac{r^2}{a^2(x)}\right) \quad \text{with} \quad a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x}\right)$$

 $a_1 \approx 0.15$ tuned to **rise** of $\sigma_{\rm ND}$ a_0 tuned to **value** of $\sigma_{\rm ND}$, given PDF, $p_{\perp 0}$, ...

Consequence: collisions at large x will have to happen at small b, and hence further large-to-medium-x MPIs are enhanced. $a_1 > 0$ not favoured by tunes so far!

$\langle p_{\perp} \rangle (n_{\rm ch})$ effect alive and kicking:

Colour reconnection (CR): reduce total string length ⇒ reduce hadronic multiplicity

multiplicities in nondiffractive events (8 TeV LHC) 0.12 strings crossing y = 0 primary hadrons in |v| < 0.5 charged particles in IvI < 0.5 0.1 0.08 0.06 0.04 0.02 n 0 5 10 15 20 25 30 35 40 45 50

String width \sim hadronic width

 \Rightarrow Overlap factor \sim 10!

Larger for hard collisions (small impact parameter)

A top mass puzzle

 $\left. \begin{array}{l} \Gamma_{\rm t} \approx 1.5 ~{\rm GeV} \\ \Gamma_{\rm W} \approx 2 ~{\rm GeV} \\ \Gamma_{\rm Z} \approx 2.5 ~{\rm GeV} \end{array} \right\} \Rightarrow c\tau \approx 0.1 ~{\rm fm}: \label{eq:gamma}$

p "pancakes" have passed, MPI/ISR/FSR for $p_{\perp} \ge 2$ GeV, inside hadronization colour fields.

Experiment	m _{top} [GeV]	Error due to CR	Reference	
World comb.	173.34±0.76	310 MeV (40%)	arXiv:1403.4427	
CMS	172.22±0.73	150 MeV (20%)	CMS-PAS-TOP-14-001	
D0	174.98±0.76	100 MeV (13%)	arXiv:1405.1756	(S. Argyropoulos

- 1. Great job in reducing the errors.
- 2. CR is one of the dominant systematics.
- 3. Why is the CR uncertainty going down when there are
 - no advances in theoretical understanding, and
 - no measurements to constrain it?

Top mass shift in PYTHIA 6

Studies for the Tevatron. Fit \rightarrow scaled: Jet Energy Scaling. $\Delta m_{\rm top}^{\rm fit}$ $\Delta m_{\rm top}^{\rm scaled}$ Pythia v6.416 Green bands: old virtuality-ordered showers. Tune A Tune A-CR Blue bands: new Tune A-PT p_{\perp} -ordered showers. Tune DW Tune BW In total ± 1.0 GeV, S0 whereof ± 0.7 GeV **S1** perturbative, \$2 and ± 0.5 GeV NoCR. nonperturbative. -10 -5 Δm.

(M.Sandhoff and P.Z Skands, FERMILAB-CONF-05-518-T;) D. Wicke and P.Z. Skands, EPJ C52 (2007) 133, Nuovo Cim. B123 (2008) S1

$\operatorname{Pythia} 8.1 \ \text{CR} \ \text{model}$

Only one CR model:

 $\bullet\,$ Starting from lowest- $p_{\perp}\,$ MPI and moving upwards define its

$$\mathcal{P}_{\rm rec}(p_T) = rac{(R_{\rm rec} \ p_{T0})^2}{(R_{\rm rec} \ p_{T0})^2 + p_T^2}$$

with any higher- p_{\perp} MPI. R_{rec} one free parameter of model.

- Find colour dipoles of highest- p_{\perp} MPI.
- Consecutively attach each gluon of each lower-p_⊥ MPI to be reconnected where it increases the string length λ the least.
- Repeat for lower- p_{\perp} MPIs that form separate systems.

End result: fewer but bigger systems, with reduced total λ .

Three CR options for top:

- no CR at all
- \bullet late resonance decays: t/W decays after CR
- early resonance decays: t/W decays before CR

S. Argyropoulos & TS: arXiv:1407.6653 [hep-ph] \Rightarrow JHEP

Basic idea: produce range of models to study how big $\Delta m_{
m top}$ could be without contradicting data.

Top CR as afterburner:Top CR on equal footing:
more sophisticated / fragiletoy / stealth modelsmore sophisticated / fragile• forced random• swap• forced nearest• move• forced farthest• swap + flip• forced smallest $\Delta\lambda$ • move + flip• smallest $\Delta\lambda$ so as to reduce λ

The λ measure of an event is approximated by

$$\lambda \approx \lambda_{\rm approx} = \sum_{\rm dipoles} \ln \left(1 + \frac{m_{ij}^2}{m_0^2} \right)$$

with $m_0 \approx m_{\rm hadronic} \approx 1$ GeV.

Some ways to perform a reconnection

Effects on top mass before tuning

Asymmetric spread: $\Delta m_{top} < 0$ easy, $\Delta m_{top} > 0$ difficult. Parton showers already prefer minimal λ . Main effect from jet broadening, some from

jet-jet angles.

Effects on top mass after tuning

No publicly available measurements of UE in top events.

- Afterburner models tuned to ATLAS jet shapes in $t\bar{t}$ events \Rightarrow high CR strengths disfavoured.
- Early-decay models tuned to ATLAS minimum bias data
 - \Rightarrow maximal CR strengths required to (almost) match $\langle p_{\perp} \rangle (n_{\rm ch})$.

model	$\Delta m_{ m top}$
	rescaled
default (late)	+0.239
forced random	-0.524
swap	+0.273

 $\Delta m_{
m top}$ relative to no CR

 $m_{\rm top}^{\rm max} - m_{\rm top}^{\rm min} \approx 0.80$ GeV

Excluding most extreme (unrealistic) models down to

 $m_{top}^{max} - m_{top}^{min} \approx 0.50$ GeV

(in line with Sandhoff, Skands & Wicke)

Studies of top events could help constrain models:

- jet profiles and jet pull (skewness)
- underlying event

Summary and Outlook

- MPI key PYTHIA component since almost 30 years.
- Original concepts still hold: screening with $p_{\perp 0} \approx 2$ GeV, p_{\perp} -order, $n_{pert} \ge 1$, reconnection, strings, ...
- Many aspects gradually becoming more sophisticated, notably interleaved evolution MPI + ISR + FSR.
- Everything mixed up ⇒ experimental tests indecisive, e.g. rescattering and x-dependent proton size.
- Colour reconnection one of big known unknowns.
- Experimental $\Delta m_{\rm top}$ CR error out of control?
- Need dedicated experimental studies of CR in top events.
- New CR model/framework by J.R. Christiansen and P. Skands coming up (next).