Past, Present and Future of the PYTHIA Event Generator

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics
Lund University
Sölvegatan 14A, SE-223 62 Lund, Sweden

Jyväskylä, 16 April 2021

1994: First ATLAS/CMS Technical Proposals

CMS Technical Proposal:

Fig. 12.9: Full GEANT simulation of $\mathrm{H}(150 \mathrm{GeV}) \rightarrow \mathrm{ZZ}^{*} \rightarrow 2 \mathrm{e}^{+} 2 \mathrm{e}^{-}$.

ATLAS T. P.:

Figure 11.6: Expected $\mathrm{H} \rightarrow \gamma \gamma$ signal for $m_{\mathrm{H}}=120 \mathrm{GeV}$, combined with the prompt $\gamma \gamma$ background, assuming an integrated luminosity of $10^{5} \mathrm{pb}^{-1}$.

For ATLAS/CMS/LHCb detector design studies in the 1990'ies, PYTHIA was providing input for most GEANT 3 simulations!

How did that come about? What has happened since?
Many of the basic ideas came early, and are "easy" to present. Later additions are very important, but less transparent.

1977: Lund studies of hadronization begin

B.Andersson, G. Gustafson, C. Peterson, Z. Physik C1 (1979) 105 (begun 1977, preprint 1978, published 1979):

- constant string tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$
- particle production (approximately) along hyperbola
- lightcone kinematics $\left(\mathrm{p}^{ \pm}=E \pm p_{z}\right)$
- analytic, recursive procedure from one end
- no complete systems
- $f(z)=1$ not left-right symmetric

1978: The beginning of jet Monte Carlo

R.D. Field and R.P. Feynman,

A Parametrization of the
Properties of Quark Jets,
Nucl. Phys. B136 (1978) 1

- recursive procedure, with
- Monte Carlo implementation
- only one jet
- no space-time picture
starting point for $e^{+} \mathrm{e}^{-}$generators:
- Hoyer et al.
- Ali et al.

1978: The beginning of jet Monte Carlo

R.D. Field and R.P. Feynman,

- no space-time picture starting point for $e^{+} \mathrm{e}^{-}$generators:
- Hoyer et al.
- Ali et al.

Lund: Bengt E.Y. Svensson suggests Monte Carlo implementation of current Lund analytic equations in Field-Feynman spirit, carried out by TS and B. Söderberg

1978: JETSET version 1

subroutine jetgen (n)
OHMON /JET/ KC100,
COHMON /PAR/ PUU, PSA, P(100,5
COMMON /DATA1/ MESO(9,2), CMIX (6,2 , EBEG, WFIN, IFLEEG
1FLSGN $=10$
$H=2 . \times E E E G$
$1=0$
$I P D=0$
C 1 FLAVOUR AND PT FOR FIRST QUARK
1 FLI $=1 A B S$ (IFLBEG)
PT1=SIGMA+SQRT(-ALOS(RANF (0)))
PHI $1=6.2832 *$ RANF (D)
P $\times 1=$ PT $1 * \cos$ (PHI1 $)$
PY1=PT1*SIN(PHI1)
c. ${ }_{2}^{100} \begin{aligned} & 1=1+1 \\ & \text { FLANOUR }\end{aligned}$

PT $2=$ SIGMA*SQRT (-ALOG(RANF (0)))
$\mathrm{PH} \times 2=\mathrm{P} T 2+\cos (\mathrm{PH}+2)$
C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED
$K(1,1)=M E S O(3 *(1 F L 1-1)+1 F L 2,1 F L S G N)$
SPPIN $=1 N T($ PSS $1+$ RANF $(0))$
$K(I+2)=1+9 * I S P I N+K(1,1)$
F(K (1,1) ,LE.6) GOTO 110
TMIX $=$ RANF (0)
KMaK(1)1)-b+J+1SPIN
C 4 MESON MASS FROM TABLE, PT FROH $(K M, 1)$) 1 NT (TMIX + CMIX $(K M, 2)$)
110 $\mathrm{P}(1,5)=$ PMAS $(K(1,2))$ PT FROH CONSTITUENTS
$P(1,1)=P X_{1}+P X_{2}$
$P(1,2)=P Y_{1}+P Y_{2}$
PMTS $=P(1,1) * * 2+P(1,2)+* 2+P(1,5) * * 2$
C 5 RANDOH CHOICE OF $X=(E+P Z) M E S O N /(E+P Z)$ AVAILABLE GIVES E AND PZ X=RANF (0)
IF (RANF CO

. IF $^{P(1,4)=(x * W+P M T S / C}$ UNSTABLE

F(IPD.LT 2 , GE, 8) CALL DECAY(IPD,1)
7 FLAVOUR LT. I.AND. I.LE.96) GOTO 120

PY1 $1=-\mathrm{PY} 2$
IF
c 5 IF ENOUGH E+PZ LEFT, 60 TO 2
IF (W.GT.WFIN.ANO.1.LE.9S) GOTO 100
$\mathrm{N}=1$
END

SUBROUTINE LIST(N)
COMMON /JET/ K (100, 2), $P(100,5)$
COHMON /DATA3/ CHA1 (9), CHA2(19), CHA3(2)
HRITE ($6: 110$)
DO $100 ~$
$I=1=1, N$
$1 F(K(1,1), G T, 0) \quad C 1=C H A_{1}(K(1,1))$
IF (K(1,1),LE.0) $1 C 1=-K(1,1)$

$C 3=C H A 3((47-K(1,2)) / 20)$
IF (K 1,1$), G T .0)$
WRITE(6,120$)$
$1, C 1, C 2, C 3,(P(1, J), j=1,5)$
$100 \mathrm{IF}(\mathrm{K}(1,1)$ LE 0) $\operatorname{HRITE}(6,130) \mathrm{I}$, IC1, C2, C3, (P(I,J), J=1,5)
RETURN
10 FORMAT (/////T11,' ${ }^{\prime}$ ', T17,'OR1, T24,'PART', T32,'STAB',
20 FORMAT',T5S,'PY',TGS,'PZ',T80, 'E',T92, 'M'
120 FORMA $(10 x, 12,4 x, A 2,1 x, 2(4 x, A 4), 5(4 x, F R, 1))$
130 FOMA $(10 x, 12,4 X, 1 x, 12,2(4 x, A 4), 5(4 x, F S, 1))$
END

1973: The forgotten Artru-Mennessier model

X. Artru and G. Mennessier, String Model and Multiproduction Nucl. Phys.B70 (1974) 93

- exponential decay in area
- complete two-jet system
- Monte Carlo code
- off-shell hadrons
- no transverse d.o.f.
- not salesmen

1982: Lund symmetric
fragmentation function

$$
f(z)=\frac{(1-z)^{a}}{z} \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)
$$

1980: The string effect

Lund December 1979

$\stackrel{\underset{\mathrm{P}}{\text { I }}}{ }$
\Rightarrow JADE,
Moriond, March 1980
... but not by TASSO

1982: The strong coupling

CELLO: The influence of
 Fragmentation Models in the Determination of the Strong Coupling Constant in $\mathrm{e}^{+} \mathrm{e}^{-}$ Annihilation into Hadrons

Value of α_{s} obtained at $s=34 \mathrm{GeV}$ with the Lund model (LM) and the Hoyer model (HM). (first order in QCD)

Method	Lund model	Hoyer model	$\frac{\alpha_{s}(\mathrm{LM})}{\alpha_{s}(\mathrm{HM})}$
$S \geqslant 0.25 A \leqslant 0.1$	0.280 ± 0.045	0.190 ± 0.030	1.47
$O \geqslant 0.20$	0.260 ± 0.040	0.190 ± 0.020	1.37
$O \geqslant 0.30$	0.255 ± 0.050	0.200 ± 0.035	1.28
\# of 3-clusters	0.235 ± 0.025	0.145 ± 0.020	1.62
Cluster Thrust	0.235 ± 0.025	0.155 ± 0.015	1.52
EWAC*	0.250 ± 0.040	0.150 ± 0.020	1.67

The error in the determination of α_{2} using the 3 -jet fraction (see text) is statistical only (including statistical Monte Carlo error).
*Energy-weighted angular correlation.

String fragmentation increases α_{s} by $\sim 50 \%$!

JETSET 3: ~ 1000 lines

Fig. 2a-d. A slightly exaggerated picture of momentum conservation effects. In a the momenta of initial partons are full arrows and of jets after fragmentation dashed, with dotted indicating final momentum imbalance: In \mathbf{b}-d the momenta before conservation are dashed (as in a), after full. Hoyer rescaling in \mathbf{b}, Ali boost in \mathbf{c}, Lund strings (along which particles are sitting) in d

1982: The beginning of PYTHIA

LEPTO: colour flow in ep DIS (G. Ingelman \& TS)
Compton + High- p_{\perp} : colour flow in pp (Hans-Uno Bengtsson)
Process: $\quad q_{i} \bar{q}_{i} \rightarrow g g$

Diagrams:

Colour flows:

A
-
B
$N_{C} \rightarrow \infty$ classifies colour topologies
\Rightarrow CAdstand dral \Rightarrow PYTHIA

Delphi and Pythia

Delphi: 120 km west of Athens, on the slopes of Mount Parnassus. Python: giant snake killed by Apollon.
The Oracle of Delphi: ca. 1000 B.C. - 390 A.D.
Pythia: local prophetess/priestess.
Key role in myths and history, notably in
"The Histories" by Herodotus of Halicarnassus ($\sim 482-420$ B.C.)

1983: Complicated string topologies

1984: Backwards evolution of ISR

Final-state radiation (FSR) intensely studied, two coded up:

- Kajantie-Pieterinen (incoherent) and
- Marchesini-Webber (coherent)

Initial-state radiation (ISR) big hurdle

- forward evolution in time and Q^{2} may not "hit right"
- backwards evolution reverses order

This probability exponentiates, so that one may define a form factor

$$
\begin{equation*}
S_{b}\left(x, t_{1} ; t\right)=\exp \left\{-\int_{t}^{t} 1 d t^{\prime} \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} \sum_{a} \int \frac{d x^{\prime}}{x^{\prime}} \frac{f_{a}\left(x^{\prime}, t^{\prime}\right)}{f_{b}\left(x, t^{\prime}\right)} p_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)\right\} \tag{3}
\end{equation*}
$$

1985: Multiparton interactions

without MPI: low- p_{\perp}

+ QCD $p_{\perp \text { min }}=1.6 \mathrm{GeV}$
+ ISR+FSR

with MPI,
$p_{\perp \text { min }}=2.0,1.6,1.2 \mathrm{GeV}$

1986: Colour reconnection

1996: Colour reconnection in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

At LEP 2 search for effects in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q}_{1} \overline{\mathrm{q}}_{2} \mathrm{q}_{3} \overline{\mathrm{q}}_{4}$:

- perturbative $\left\langle\delta M_{\mathrm{W}}\right\rangle \lesssim 5 \mathrm{MeV}$: negligible!
- nonperturbative $\left\langle\delta M_{\mathrm{W}}\right\rangle \sim 40 \mathrm{MeV}$:
favoured; no-effect option ruled out at 99.5\% CL.
Best description for reconnection in $\approx 50 \%$ of the events.
- Bose-Einstein $\left\langle\delta M_{\mathrm{W}}\right\rangle \lesssim 100 \mathrm{MeV}$: full effect ruled out (while models with $\sim 20 \mathrm{MeV}$ barely acceptable).

1986: Dipole showers

Gösta Gustafson: dual description of partonic state: partons connected by dipoles \Leftrightarrow dipoles stretched between partons parton branching \Leftrightarrow dipole splitting

Fig. 3

Fig. 4
p_{\perp}-ordered dipole emissions \Rightarrow coherence (cf. angular ordering)

- Originally implemented in Ariadne
- Now basis for three different implementations in Pythia: old simple, Vincia and Dire
- plus showers in Herwig, Sherpa, ... Huge enterprise with many people over many years, aiming for increased precision, NLO+NLL and beyond

1986: Matrix element corrections

Consider $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} / \mathrm{Z}^{0} \rightarrow \mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{q} \overline{\mathrm{q}} g$ with $\mathrm{d} \mathcal{P}_{\mathrm{ME}}=\mathrm{d} \sigma_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{LO}} / \sigma_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{LO}}$

$$
\begin{aligned}
\mathrm{d} \sigma_{\mathrm{q} \overline{\mathrm{q}}} & =\sigma_{\mathrm{qq}}^{\mathrm{NLO}} \mathrm{~d} \mathcal{P}_{\mathrm{PS}} \exp \left(-\int_{Q^{2}}^{Q_{\max }^{2}} \mathrm{~d} \mathcal{P}_{\mathrm{PS}}\right) \\
& \times \frac{\mathrm{d} \mathcal{P}_{\mathrm{ME}}}{\mathrm{~d} \mathcal{P}_{\mathrm{PS}}} \exp \left(-\int_{Q^{2}}^{Q_{\max }^{2}}\left(\mathrm{~d} \mathcal{P}_{\mathrm{ME}}-\mathrm{d} \mathcal{P}_{\mathrm{PS}}\right)\right) \\
& =\sigma_{\mathrm{qq}}^{\mathrm{NLO}} \mathrm{~d} \mathcal{P}_{\mathrm{ME}} \exp \left(-\int_{Q^{2}}^{Q_{\max }^{2}} \mathrm{~d} \mathcal{P}_{\mathrm{ME}}\right)
\end{aligned}
$$

using the veto algorithm, assuming $\mathrm{d} \mathcal{P}_{\mathrm{PS}}>\mathrm{d} \mathcal{P}_{\mathrm{ME}}$ everywhere. Later extended to (almost) all resonance decays $a \rightarrow b c \rightarrow b c$ g and some ISR like $\mathrm{q} \overline{\mathrm{q}} \rightarrow \gamma^{*} / \mathrm{Z}^{0} / \mathrm{W}^{ \pm} / \ldots$.
Rediscovered as the POWHEG method, now commonly used for NLO processes.

1992: Unified full-length manual

Pythia 5.6 and Jetset 7.3
Physics and Manual
Torbjörn Sjöstrand
Theory Division, CERN
CH-1211 Geneva 23
Switzerland

- good documentation key to early success
- 12 published manuals
- from 1992: steadily updated big manual (280 pp)
- PYTHIA 6.4 in JHEP 2006, $(480$ pp \rightarrow) 580 pp $>11,500$ citations
- in total $>35,000$ citations
- now bulk of documentation as $\times \mathrm{ml} /$ html manual
- but big new publication in preparation
does not stop a HUGE amount of mail/questions

1996: SPYTHIA

(Snowmass 1984, 1986; Aachen 1990; ...)

1996: Parton-level interfaces

- originally: each generator is an island, with hard-coding only feasible for $2 \rightarrow 2$ and a few $2 \rightarrow 3$
- 1988: PDG particle codes ($1=\mathrm{d}, 2=\mathrm{u}, 11=\mathrm{e}^{-}, 21=\mathrm{g}, \ldots$)
- 1989: HEPEVT commonblock for final (LEP) events
- 1996: LEP2 4-fermion generator parton input to JETSET
- $(1989 \rightarrow)$ ~1998: CompHEP
- $(1994 \rightarrow)$ ~2000: MadGraph
- 2001: Les Houches Accord, transfer of event information using Fortran commonblocks

INTEGER MAXPUP
PARAMETER (MAXPUP=100)
INTEGER IDBMUP, PDFGUP, PDFSUP, IDWTUP, NPRUP, LPRUP DOUBLE PRECISION EBMUP, XSECUP, XERRUP, XMAXUP COMMON/HEPRUP/IDBMUP (2), EBMUP (2), PDFGUP (2), PDFSUP (2), \& IDWTUP, NPRUP, XSECUP (MAXPUP) , XERRUP (MAXPUP) , \&XMAXUP (MAXPUP) , LPRUP (MAXPUP)

INTEGER MAXNUP

PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP, MOTHUP, ICOLUP
DOUBLE PRECISION XWGTUP, SCALUP,AQEDUP, AQCDUP, PUP, VTIMUP, \&SPINUP
COMMON/HEPEUP/NUP, IDPRUP, XWGTUP, SCALUP, AQEDUP, AQCDUP,
\&IDUP (MAXNUP), ISTUP (MAXNUP), MOTHUP (2, MAXNUP),
\& ICOLUP (2, MAXNUP) , PUP (5, MAXNUP) , VTIMUP (MAXNUP), \&SPINUP (MAXNUP)

- 2006: Les Houches Event Files 1.0, ditto, using file format
- several other standards: SLHA, LHAPDF, HepMC, ...

2000: Match and Merge

- Match: transition from (one) ME at high Q to PS at low
- Merge: combine several ME topologies: $X, X+1, X+2, \ldots$
- Use shower Sudakovs to provide missing virtual corrections
- Increasingly technical sophistication over 20 years!
- Main research topic of larger event generator community

many methods, several from Lund (Leif Lönnblad, Stefan Prestel)
- Match: MC@NLO, POWHEG
- Merge: CKKW, CKKW-L, MLM, FxFx
- M\&M: UMEPS, NL³, UNLOPS
~ 10 alternatives in PYTHIA, all rely on LHEF input

2004: PYTHIA 8

All early codes written in Fortran 77
1998: PYTHIA 7 in C ++ , sophisticated platform \rightarrow ThePEG 2004: PYTHIA 8 in C++, simpler approach but physics focus

2007: 8.1 first public release
2014: 8.2 some systematization \Rightarrow minor incompatibility
2019: 8.3 C $++98 \rightarrow C++11$, significant internal changes

Code size expansion

- 1997: JETSET fused into PYTHIA
- size includes comment lines and blank lines
- for $\mathrm{C}++$: source, headers, example main programs, but not data (PDF, LHEF), xml/html manual, ME libraries, ...
- currently ~ 300, 000 lines

Group size expansion

Does not include:

- non-coding collaborators, like Bo Andersson and Gösta Gustafson
- authors of other "Lund" programs built on top, like LEPTO, ARIADNE, FRITIOF, LDC, DIPSY, POMPYT, ...
- many authors of other non-Lund programs built on top

Administrative structure

Current authors:
Christian Bierlich
Nishita Desai
Leif Gellersen
Ilkka Helenius
Philip Ilten
Leif Lönnblad
Stephen Mrenna
Stefan Prestel
Christian Preuss
Torbjörn Sjöstrand
Peter Skands
Marius Utheim
Rob Verheyen

Exploding collaboration size new problem; still finding our way.

Main tasks crystallized in recent years, notably Philip Ilten as codemaster.

Future organization discussed this week, resulting in triumvirate:

- spokesperson: Peter Skands (deputy: Ilkka Helenius)
- code master: Philip Ilten (deputy: Stephen Mrenna)
- web master: Christian Bierlich

Physics studies based on personal interest, so far little to no central planning, but now begun discussion of common projects.

Showers and matching\&merging

Strive towards NLO + NLL by improved showers, combined with higher-order matrix elements

VINCIA - VIrtual Numerical Collider with Interleaved Antennae Skands, Preuss, Verheyen

- antenna-dipole: $2 \rightarrow 3$ splittings with both recoiling
- sector shower: unique path to given final state
- full electroweak cascade module

DIRE - DIpole REsummation Prestel, Gellersen

- developed jointly with SHERPA
- NLO splitting kernels (negative weights!)
- scale and scheme variations in merging
- Dark Matter emission in shower

Heavy-ion collisions

Bierlich, Lönnblad (+ Gösta Gustafson, students, postdocs)

- 1984: FRITIOF, successful at low energies, but not for higher
- 2016: ANGANTYR for complete pA and AA collisions
- full nuclear geometry
- subdivide collisions into binary ones
- ropes with higher string tension
- shove between strings gives flow

Hadronic rescattering and applications

Utheim, TS (Bierlich, Ilten)

- space-time picture of hadronization
- low-energy hadron-hadron collisions
- hadronic rescattering in pp, pA, AA

Future (?):

- formation of pentaquarks etc.
- Bose-Einstein
- extend to arbitrary energies
- component of cosmic ray cascades
(PYTHIA already heavily used for cosmic ray production, e.g. by Dark Matter annihilation)

high-energy cosmic ray in atmosphere, not with PYTHIA

... and much more

- $\gamma \mathrm{p}, \gamma \gamma$, notably in AA collisions; UPC = UltraPeripheral Collisions (Helenius)
- DIS and photoproduction transition e.g. at EIC (Helenius, Prestel, Bierlich)
- BSM physics, e.g. Dark Matter (Desai, Prestel, Skands, ...)
- bottom/charm/ τ physics (Ilten)
- FCC and other future accelerators (all)
- Rivet and other common tools (Bierlich, ...)
- code development (all), e.g. parallelization (Utheim, ...)

New topics tend to come along when least you expect it. No lack of work to be done!

Five-year plan?

- Dark showers
- DM annihilation spectra
- New BSM models
- BSM in hadron decay
- EW evolution
- Precision physics
- Become NNLO generator
- Heavy lons
- Photon-ion collisions
- Smooth DIS transition
- Nonperturbative models
- B physics
- QED at hadronic scales
- Cosmic rays

