
Forward Physics in PYTHIA 8

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics
Lund University

Sölvegatan 14A, SE-223 62 Lund, Sweden

Forward Physics Facility Kickoff Meeting, 9-10 November 2020



Forward data - 1
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Figure 4: Comparison of the photon spectra obtained from the experimental data and MC

predictions. The top panels show the energy spectra, and the bottom panels show the ratio of

MC predictions to the data. The hatched areas indicate the total uncertainties of experimental

data including the statistical and the systematic uncertainties.
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Fig. 6. Ratios of total multiplicities with FSI (’FSIon’) and without FSI (’FSIo↵’) of ⇡±, K±, p , p̄, K0
s and ⇤+⌃0 produced

in N + N collisions: the red lines correspond to p + p, blue lines – to p + n and green lines – to n + n reactions.
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Fig. 7. Proton xF distribution (left plot) in p + p collisions at
p

sNN = 17.3 GeV. Mean transverse momentum < pT > of
protons (middle plot) and ⇡+ (right plot) as a function of xF in p + p collisions at

p
sNN = 17.3 GeV. The experimental data

are taken from the NA49 Collaboration [40,38].

V. Kireyeu et al., arXiv:2006.14739

LHCf, PLB 78, 233

Need mechanism for protons to
take more energy (from pions)?
Diffractive-related or not?

Forward region also important for cosmic-ray physics.
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Forward data - 2

Cleanest environment may be DIS:
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Figure 16. The rate 1/σinc · dσLB/dxL for leading proton (dots) and leading neutron production

(circles). The bands show the systematic uncertainties.

proton production rate 1/σinc · dσLP/dxL and to the p2
T slopes. In both MC models, the

QCD radiation was performed either by the parton shower [40] or colour dipole (CDM) [48]

models. None of the DIS Monte Carlo models can reproduce the flat dependence of xL

below the diffractive peak. The MC generator Djangoh, with SCI and MEPS, reproduces

quite well the dependence of b on xL, although the mean values of the slope are lower than

those measured. In the other MC models, the value of the slope is consistent with the

measurements only at high xL.

11 Summary

The cross section of leading proton production for xL > 0.32 and p2
T < 0.5 GeV2 and its

ratio to the inclusive DIS cross section have been measured in the range Q2 > 3 GeV2

– 48 –

ZEUS, JHEP 06 (2009) 074
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Figure 6: Normalised cross sections of forward neutron production in DIS as a function of
xF in three W intervals in the kinematic region given in Table 1. The inner error bars show
the statistical uncertainty, while the outer error bars show the total experimental uncertainty,
calculated using the quadratic sum of the statistical and systematic uncertainties. Also shown
are the predictions of CDM (dotted line), RAPGAP-π (dashed line) and a linear combination of
CDM and RAPGAP-π predictions (solid line).

25

H1, EPJC 74 (2014) 2915

Data exists, but need RIVET analyses to facilitate comparisons.
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Simple remnants

Assume one parton kicked out of proton, in pp (or DIS):

1 Kick out valence quark: colour triplet diquark left,
⇒ single string stretched out from beam remnant.

2 Kick out gluon: colour octet q1q2q3 remnant left
⇒ split momentum between two strings,
one to q1q2 antitriplet and one to q3 triplet.

3 Kick out sea antiquark q4: colour triplet q1q2q3q4 remains,
⇒ split momentum between B = q1q2q4 singlet
and string to q3 triplet.

4 Kick out sea quark q4: colour antitriplet q1q2q3q4 remains,
⇒ split momentum between M = q1q4 singlet
and string to q2q3 antitriplet.

13 TeV pp nondiffractive collisions:
∼85% gluons, ∼5% each for others;
(but no gluons for DIS to LO)
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The Lund Model

Combine yo-yo-style string motion with string breakings!

space

time
quark
antiquark
pair creation

A q from one string break combines with a q from an adjacent one.

String tension κ ≈ 1 GeV/fm relates (t, x) and (E ,p).

Gives simple but powerful picture of hadron production.
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The popcorn model for baryon production

B M

B
M M B

B
M

- z

6

t

SU(6) (flavour×spin) Clebsch-Gordans needed.

Expected strong suppression of multistrange and spin 3/2
baryons damped by effective parameters.
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Fragmentation and beam remnants

Recursive fragmentation from one end:

f (z) ∝ 1

z
(1− z)a exp

(
−bm2

⊥
z

)
, z =

(E + pz)hadron
(E + pz)left in string

By default a = 0.68 and b = 0.98 GeV−2 from LEP tune.
To be continued . . .

Split momentum between remnant parts:

1 for each valence quark pick xi according to (1− xi )
p/
√
xi ,

with p = 3.5 for u and p = 2.0 for d

2 for diquark form xij = 2(xi + xj) from above

3 for sea (anti)quark use kicked-out sister x (in hard process)
as if pair comes a from g→ q4q4 perturbative splitting

4 rescale sum to remaining beam momentum
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Simple results
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The structure of an event

An event consists of many different physics steps to be modelled:

PDF

ME

ISR

FSR

M&M

MPI

BBR

CR

Fragmentation

Decays

Rescattering

BE
σtot = · · ·
Unknown?

Fragmentation can include clusters, strings, ropes, QGP, shove, . . .
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Junctions and the baryon number

A proton can be visualized as a Y-shaped topology, with a valence
quark at the end of each leg and a junction in the middle.

Two valence quarks can be kicked out if two or more MPIs.

Junction

u

u d

r′

g′

b′g′′

g′′

r

b

g

b′

g′′

b′

r

bg′′

The junction then can be shifted in towards center of event,
carrying the baryon number and baryon production with it.
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Beam remnants – the general case

Parton in beam remnant

Composite object

Parton going to hard interaction

qq
qv1
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Figure 10: Examples of the formation of composite objects in a baryon beam remnant: (a)
diquark, (b) baryon and (c) meson.

2. Composite objects may be formed, but only when all partons involved in the formation
are valence quarks.

3. The formation of diquarks may involve both valence and sea quarks, but the formation
of colour singlet subsystems (i.e. hadrons) is still restricted to involve valence quarks
only.

4. Sea quarks may also be used for colour singlet formation.

The idea is thus that (spectator) valence quarks tend to have comparable velocities, while
sea quarks can be more spread out and therefore are less likely to form low-mass systems.

Whether composite systems in the beam remnant are formed or not has important
consequences for the baryon number flow. For pp collisions at 1.8 TeV CM energy, we show
in Fig. 11 the Feynman x (left plot) and rapidity (right plot) distributions for the baryon
which ‘inherits’ the beam baryon number. We denote this baryon the ‘junction baryon’. To
better illustrate what happens to each of the two initial beam baryon numbers separately,
only distributions for the junction baryon, not antibaryon, are shown. Possibilities 1 and 2
above are compared with the old multiple interactions model (Tune A). One immediately
observes that the beam baryon number migrates in a radically different way when diquark
formation is allowed or not (compare the dashed and dotted sets of curves). In fact, in the
new model it is not possible to reproduce the old distribution (compare the solid curve).
This comes about since, even when all possible diquark formation is allowed in the new
model, it is not certain that the beam remnant actually contains the necessary quark
content, hence in some fraction of the events the formation of a beam remnant diquark is
simply not possible. Here is thus an example where the introduction of more physics into
the model has given rise to a qualitatively different expectation: the beam baryon number
appears to be stopped to a larger extent than would previously have been expected.

28

Need to model:

Flavour content of remnant; also valence vs. sea/companion

Colour structure of partons; including junctions and CR

Longitudinal sharing of momenta

Transverse sharing of momenta — primordial k⊥
(nontrivially relates to low-p⊥ ISR handling)
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Results for full model
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Diffraction

Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

Differential cross sections set by Reggeon theory, ∼ dM2
X/M

2
X .

Smooth transition from low-mass simple model
to high-mass IPp with full pp machinery: MPIs, showers, etc.

High-mass diffractive system ≈ like nondiffractive proton end,
but recoling proton in single diffraction ∼ dxF/(1− xF).
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Multiplicity in diffractive events
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PYTHIA 6 lacks MPI, ISR, FSR in diffraction, so undershoots.
Torbjörn Sjöstrand Forward Physics in PYTHIA 8 slide 14/30



Results with diffraction

Excluding “elastically scattered” proton of single diffraction
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More on fragmentation functions

f (z) ∝ 1

z
(1− z)a exp

(
−bm2

⊥
z

)
⇔ P(Γ) ∝ Γa exp(−bΓ)

where Γ = (κτ)2,
κ ≈ 1 GeV/fm.

What if diquark takes
longer to produce?
Favoured by LEP data:
aq = 0.68, aqq = 1.65.

Schematic illustration of three cases

space

time
quarks
diquarks
pair creation

i → j : f (z) ∝ 1

z
zai
(

1− z

z

)aj

exp

(
−bm2

⊥
z

)
You do not escape from (1− z)a suppression for z → 1!
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Results for varied fragmentation function
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Transverse momentum in the forward direction
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Is 〈p⊥〉 increasing or decreasing
in forward region?
Depends on what it is plotted
as a function of!
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Transverse momentum for hard process

Consider e.g. inclusive Z0 production, with known p⊥.
How is this compensated by the other particles in the event?
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(Z0 along −x axis in transverse plane; π0 set stable)
Conclusion 1: Primordial k⊥ kicks are imposed on beam remnants,
and does give higher 〈p⊥〉 for |y | > 5.

Conclusion 2: hard p⊥ kick does not influence |y | > 5 region.
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Impact of central activity on forward one

Classify nondiffractive events by charged multiplicity in |η| < 2.5:
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Forward muons and neutrinos

Capability to trace full history of particle production and decay,
including space–time evolution from fm to km scales.

Example: flux of muons and neutrinos 100 m from interaction,
for total cross section (elastic/diffractive/nondiffractive):
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(note: secondary decays D→ π → µ count as π, not charm)
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Summary

Forward physics is extensively modelled in PYTHIA . . .
. . . but little tested, and rather constrained,
e.g. central MPI activity ⇒ possible remnant structures.
Action list:

Gather existing data, implement in RIVET analyses

Compare DIS and pp forward spectra

Find way that gives more forward protons?
(P. Edén, G. Gustafson, Z.Phys.C75 (1997) 41, “curtain quarks”?)

Compare rate of different forward baryons (p, n, Λ, . . . )
and mesons (π+, π−, K0

S, . . . )

Correlate flavour, y/xF and p⊥ for leading vs. second-leading
particle. Consistent with single or multiple strings?

Correlate central and forward activity

Develop and implement new physics mechanisms?
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Backup: How does the string break?

String breaking modelled by tunneling:

P ∝ exp

(
−
πm2
⊥q
κ

)
= exp

(
−
πp2⊥q
κ

)
exp

(
−
πm2

q

κ

)

• Common Gaussian p⊥ spectrum, 〈p⊥〉 ≈ 0.4 GeV.

• Suppression of heavy quarks,

uu : dd : ss : cc ≈ 1 : 1 : 0.3 : 10−11.

• Diquark ∼ antiquark ⇒ simple model for baryon production.
Extended by popcorn model: consecutive qq pair production
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Backup: MPIs in PYTHIA

MPIs are gererated in a falling sequence of p⊥ values;
recall Sudakov factor approach to parton showers.

Core process QCD 2→ 2, but also onia, γ’s, Z0,W±.

Energy, momentum and flavour conserved step by step:
subtracted from proton by all “previous” collisions.

Protons modelled as extended objects, allowing both central
and peripheral collisions, with more or less activity.

Colour screening increases with energy, i.e. p⊥0 = p⊥0(Ecm),
as more and more partons can interact.

Colour connections: each interaction hooks up with colours
from beam remnants, but also correlations inside remnants.

Colour reconnections: many interaction “on top of” each
other ⇒ tightly packed partons ⇒ colour memory loss?
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Backup: Interleaved evolution in PYTHIA

• Transverse-momentum-ordered parton showers for ISR and FSR
• MPI also ordered in p⊥
⇒ Allows interleaved evolution for ISR, FSR and MPI:

dP
dp⊥

=

(
dPMPI

dp⊥
+
∑ dPISR

dp⊥
+
∑ dPFSR

dp⊥

)
× exp

(
−
∫ p⊥max

p⊥

(
dPMPI

dp′⊥
+
∑ dPISR

dp′⊥
+
∑ dPFSR

dp′⊥

)
dp′⊥

)
Ordered in decreasing p⊥ using “Sudakov” trick.
Corresponds to increasing “resolution”:
smaller p⊥ fill in details of basic picture set at larger p⊥.

Start from fixed hard interaction ⇒ underlying event

No separate hard interaction ⇒ minbias events

Possible to choose two hard interactions, e.g. W−W−
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Backup: ZEUS comparison
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Figure 19. Expectations of various Monte Carlo models of DIS, as described in the figure,

compared to (a) the leading proton production rate, 1/σinc · dσLP/dxL, and (b) the p2
T -slope, b.

The bands show the systematic uncertainties.
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Backup: Results with diffraction

Including “elastically scattered” proton of single diffraction
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Backup: Results for flat f (z) for primary diquark
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Backup: space–time evolution

PYTHIA can calculate production vertex of each particle,
e.g. number of hadrons as a function of time for pp at 13 TeV:
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Backup: Beam drag effects
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