Established by the European Commission

Forward Physics in PYTHIA 8

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics
Lund University

Sölvegatan 14A, SE-223 62 Lund, Sweden

Forward Physics Facility Kickoff Meeting, 9-10 November 2020

Forward data - 1

V. Kireyeu et al., arXiv:2006.14739 LHCf, PLB 78, 233

Need mechanism for protons to take more energy (from pions)? Diffractive-related or not?

Cleanest environment may be DIS:

H1, EPJC 74 (2014) 2915

ZEUS, JHEP 06 (2009) 074
Data exists, but need RIVET analyses to facilitate comparisons.

Simple remnants

Assume one parton kicked out of proton, in pp (or DIS):
(1) Kick out valence quark: colour triplet diquark left, \Rightarrow single string stretched out from beam remnant.
(2) Kick out gluon: colour octet $\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}$ remnant left \Rightarrow split momentum between two strings, one to $\mathrm{q}_{1} \mathrm{q}_{2}$ antitriplet and one to q_{3} triplet.
(3) Kick out sea antiquark \bar{q}_{4} : colour triplet $\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3} \mathrm{q}_{4}$ remains, \Rightarrow split momentum between $\mathrm{B}=\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{4}$ singlet and string to q_{3} triplet.
(9) Kick out sea quark q_{4} : colour antitriplet $\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3} \overline{\mathrm{q}}_{4}$ remains, \Rightarrow split momentum between $M=q_{1} \bar{q}_{4}$ singlet and string to $\mathrm{q}_{2} \mathrm{q}_{3}$ antitriplet.
13 TeV pp nondiffractive collisions:
$\sim 85 \%$ gluons, $\sim 5 \%$ each for others;
(but no gluons for DIS to LO)

The Lund Model

Combine yo-yo-style string motion with string breakings!

A q from one string break combines with a \bar{q} from an adjacent one.
String tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$ relates (t, \mathbf{x}) and (E, \mathbf{p}).
Gives simple but powerful picture of hadron production.

The popcorn model for baryon production

- SU(6) (flavour×spin) Clebsch-Gordans needed.
- Expected strong suppression of multistrange and spin 3/2 baryons damped by effective parameters.

Fragmentation and beam remnants

Recursive fragmentation from one end:

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b m_{\perp}^{2}}{z}\right), \quad z=\frac{\left(E+p_{z}\right)_{\text {hadron }}}{\left(E+p_{z}\right)_{\text {left in string }}}
$$

By default $a=0.68$ and $b=0.98 \mathrm{GeV}^{-2}$ from LEP tune.
To be continued...
Split momentum between remnant parts:
(1) for each valence quark pick x_{i} according to $\left(1-x_{i}\right)^{p} / \sqrt{x_{i}}$, with $p=3.5$ for u and $p=2.0$ for d
(2) for diquark form $x_{i j}=2\left(x_{i}+x_{j}\right)$ from above
(3) for sea (anti)quark use kicked-out sister x (in hard process) as if pair comes a from $\mathrm{g} \rightarrow \mathrm{q}_{4} \overline{\mathrm{q}}_{4}$ perturbative splitting
(9) rescale sum to remaining beam momentum

Simple results

The structure of an event

An event consists of many different physics steps to be modelled:

PDF
ME
ISR
FSR
M\&M
MPI
BBR
CR
Fragmentation
Decays
Rescattering
BE
$\sigma_{\text {tot }}=\cdots$
Unknown?

Fragmentation can include clusters, strings, ropes, QGP, shove, ...

Junctions and the baryon number

A proton can be visualized as a Y-shaped topology, with a valence quark at the end of each leg and a junction in the middle.

Two valence quarks can be kicked out if two or more MPIs.

The junction then can be shifted in towards center of event, carrying the baryon number and baryon production with it.

Beam remnants - the general case

- Parton in beam remnant
\bigcirc Parton going to hard interaction
Composite object

Need to model:

- Flavour content of remnant; also valence vs. sea/companion
- Colour structure of partons; including junctions and CR
- Longitudinal sharing of momenta
- Transverse sharing of momenta - primordial k_{\perp} (nontrivially relates to low- p_{\perp} ISR handling)

Results for full model

Diffraction

Ingelman-Schlein: Pomeron as hadron with partonic content Diffractive event $=($ Pomeron flux $) \times(\mathbb{P p}$ collision $)$

- Differential cross sections set by Reggeon theory, $\sim \mathrm{d} M_{X}^{2} / M_{X}^{2}$.
- Smooth transition from low-mass simple model to high-mass $\mathbb{P p}$ with full pp machinery: MPIs, showers, etc.
- High-mass diffractive system \approx like nondiffractive proton end, but recoling proton in single diffraction $\sim \mathrm{d} x_{\mathrm{F}} /\left(1-x_{\mathrm{F}}\right)$.

Multiplicity in diffractive events

PYTHIA 6 lacks MPI, ISR, FSR in diffraction, so undershoots.

Results with diffraction

Excluding "elastically scattered" proton of single diffraction

More on fragmentation functions

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b m_{\perp}^{2}}{z}\right) \Leftrightarrow \mathcal{P}(\Gamma) \propto \Gamma^{a} \exp (-b \Gamma)
$$

where $\Gamma=(\kappa \tau)^{2}$, $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

What if diquark takes longer to produce?
Favoured by LEP data:
$a_{\mathrm{q}}=0.68, a_{\mathrm{qq}}=1.65$.

- quarks
- diquarks
- pair creation

$$
i \rightarrow j: \quad f(z) \propto \frac{1}{z} z^{a_{i}}\left(\frac{1-z}{z}\right)^{a_{j}} \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)
$$

You do not escape from $(1-z)^{a}$ suppression for $z \rightarrow 1$!

Results for varied fragmentation function

Transverse momentum in the forward direction

Is $\left\langle p_{\perp}\right\rangle$ increasing or decreasing in forward region?
Depends on what it is plotted as a function of!

Transverse momentum for hard process

Consider e.g. inclusive Z^{0} production, with known p_{\perp}. How is this compensated by the other particles in the event?

(Z^{0} along $-x$ axis in transverse plane; π^{0} set stable)
Conclusion 1: Primordial k_{\perp} kicks are imposed on beam remnants, and does give higher $\left\langle p_{\perp}\right\rangle$ for $|y|>5$.

Conclusion 2: hard p_{\perp} kick does not influence $|y|>5$ region.

Impact of central activity on forward one

Classify nondiffractive events by charged multiplicity in $|\eta|<2.5$:

Forward muons and neutrinos

Capability to trace full history of particle production and decay, including space-time evolution from fm to km scales.

Example: flux of muons and neutrinos 100 m from interaction, for total cross section (elastic/diffractive/nondiffractive):

(note: secondary decays $\mathrm{D} \rightarrow \pi \rightarrow \mu$ count as π, not charm)

Summary

Forward physics is extensively modelled in PYTHIA ...
... but little tested, and rather constrained, e.g. central MPI activity \Rightarrow possible remnant structures. Action list:

- Gather existing data, implement in RIVET analyses
- Compare DIS and pp forward spectra
- Find way that gives more forward protons? (P. Edén, G. Gustafson, Z.Phys.C75 (1997) 41, "curtain quarks" ?)
- Compare rate of different forward baryons (p, n, \wedge, \ldots) and mesons $\left(\pi^{+}, \pi^{-}, \mathrm{K}_{\mathrm{S}}^{0}, \ldots\right)$
- Correlate flavour, y / x_{F} and p_{\perp} for leading vs. second-leading particle. Consistent with single or multiple strings?
- Correlate central and forward activity
- Develop and implement new physics mechanisms?

Backup: How does the string break?

String breaking modelled by tunneling:

$$
\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp q}^{2}}{\kappa}\right)=\exp \left(-\frac{\pi p_{\perp q}^{2}}{\kappa}\right) \exp \left(-\frac{\pi m_{\mathrm{q}}^{2}}{\kappa}\right)
$$

- Common Gaussian p_{\perp} spectrum, $\left\langle p_{\perp}\right\rangle \approx 0.4 \mathrm{GeV}$.
- Suppression of heavy quarks, $\mathrm{u} \overline{\mathrm{u}}: \mathrm{d} \overline{\mathrm{d}}: \mathrm{s} \overline{\mathrm{s}}: \mathrm{c} \overline{\mathrm{c}} \approx 1: 1: 0.3: 10^{-11}$.
- Diquark \sim antiquark \Rightarrow simple model for baryon production. Extended by popcorn model: consecutive q \bar{q} pair production

Backup: MPIs in PYTHIA

- MPIs are gererated in a falling sequence of p_{\perp} values; recall Sudakov factor approach to parton showers.
- Core process QCD $2 \rightarrow 2$, but also onia, γ^{\prime} s, $\mathrm{Z}^{0}, \mathrm{~W}^{ \pm}$.
- Energy, momentum and flavour conserved step by step: subtracted from proton by all "previous" collisions.
- Protons modelled as extended objects, allowing both central and peripheral collisions, with more or less activity.
- Colour screening increases with energy, i.e. $p_{\perp 0}=p_{\perp 0}\left(E_{\mathrm{cm}}\right)$, as more and more partons can interact.
- Colour connections: each interaction hooks up with colours from beam remnants, but also correlations inside remnants.
- Colour reconnections: many interaction "on top of" each other \Rightarrow tightly packed partons \Rightarrow colour memory loss?

Backup: Interleaved evolution in PYTHIA

- Transverse-momentum-ordered parton showers for ISR and FSR
- MPI also ordered in p_{\perp}
\Rightarrow Allows interleaved evolution for ISR, FSR and MPI:

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} p_{\perp}} & =\left(\frac{\mathrm{d} \mathcal{P}_{\mathrm{MPI}}}{\mathrm{~d} p_{\perp}}+\sum \frac{\mathrm{d} \mathcal{P}_{\mathrm{ISR}}}{\mathrm{~d} p_{\perp}}+\sum \frac{\mathrm{d} \mathcal{P}_{\mathrm{FSR}}}{\mathrm{~d} p_{\perp}}\right) \\
& \times \exp \left(-\int_{p_{\perp}}^{p_{\perp \text { max }}}\left(\frac{\mathrm{d} \mathcal{P}_{\mathrm{MPI}}}{\mathrm{~d} p_{\perp}^{\prime}}+\sum \frac{\mathrm{d} \mathcal{P}_{\mathrm{ISR}}}{\mathrm{~d} p_{\perp}^{\prime}}+\sum \frac{\mathrm{d} \mathcal{P}_{\mathrm{FSR}}}{\mathrm{~d} p_{\perp}^{\prime}}\right) \mathrm{d} p_{\perp}^{\prime}\right)
\end{aligned}
$$

Ordered in decreasing p_{\perp} using "Sudakov" trick.
Corresponds to increasing "resolution": smaller p_{\perp} fill in details of basic picture set at larger p_{\perp}.

- Start from fixed hard interaction \Rightarrow underlying event
- No separate hard interaction \Rightarrow minbias events
- Possible to choose two hard interactions, e.g. $\mathrm{W}^{-} \mathrm{W}^{-}$

Backup: ZEUS comparison

ZEUS

ZEUS, JHEP 06 (2009) 074

Backup: Results with diffraction

Including "elastically scattered" proton of single diffraction

Backup: Results for flat $f(z)$ for primary diquark

Backup: space-time evolution

PYTHIA can calculate production vertex of each particle,

 e.g. number of hadrons as a function of time for pp at 13 TeV :
S. Ferreres-Solé, TS, EPJC 78, 983

Backup: Beam drag effects

Colour flow connects hard scattering to beam remnants.
Can have consequences,
e.g. in $\pi^{-} p$

$$
A\left(x_{\mathrm{F}}\right)=\frac{\# \mathrm{D}^{-}-\# \mathrm{D}^{+}}{\# \mathrm{D}^{-}+\# \mathrm{D}^{+}}
$$

(also B asymmetries at LHC, but small)

If low-mass string e.g.: c̄d: D- ${ }^{-}$, ${ }^{*-}$ cud: $\wedge_{c}^{+}, \Sigma_{c}^{+}, \Sigma_{c}^{*+}$
\Rightarrow flavour asymmetries

Can give D 'drag' to larger x_{F} than c quark for any string mass

