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The Lund Model

Assume linear confinement with a string tension κ ≈ 1 GeV/fm.

Motion of quarks and antiquarks with intermediate string pieces:

space

time
quark
antiquark
pair creation

A q from one string break combines with a q from an adjacent one.

Gives simple but powerful picture of hadron production.
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Boost properties

Consider a boost β along the z axis, with p± = E ± pz :{
E ′ = γ(E + βpz)
p′z = γ(pz + βE )

=⇒
{

p+
′

= kp+

p−′ = 1
k p
− with k =

√
1 + β

1− β

with similar contraction/compression of t± = t ± z .

This preserves transverse masses, m2
⊥ = m2 + p2⊥ = p+p−,

and invariant times, τ2 = t2 − z2 = t+t− (for x = y = 0),
while rapidity y ′ = y + ln k .

The fragmentation process is boost invariant:
same result if you boost the partons before fragmentation
or if you first fragment them and then boost the hadrons.
Applies for all boosts, but here specifically longitudinal ones.
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Fragmentation function

Fragmentation functions f (z) for
the (charm) quark → hadron
transition must be formulated in
terms of lightcone variables

z = p+h /p
+
q

to preserve the longitudinal boost
invariance of the string. 0.0 0.2 0.4 0.6 0.8 1.0

z

0.0

0.5

1.0

1.5

2.0

f(z
)

charm lightcone fragmentation function

f(z) with z lightcone

Many shapes proposed, e.g. Lund-Bowler:

f (z) ∝ 1

z1+rqbm2
q

(1− z)a exp

(
−bm2

⊥h
z

)
where a, b and rq are free parameters (a ≥ 0, b > 0, 0 ≤ rq ≤ 1).
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String pull

Consider a back-to-back cc system, along the ±z axis.
The string tension pulls the c backwards and the c forwards:

cc

string pullstring pull

p+D = zp+tot for a D hadron (D0,D+,Λ+
c , . . .) from the c,

while for a D hadron (D
0
,D
−
,Λ
−
c , . . .) from the c:


p−

D
= zp−tot(≈ zp−c )

p+
D

=
m2
⊥D

p−
D

=
m2
⊥D

zp−tot

=⇒


ED = 1

2

(
m2
⊥D

zp−tot
+ zp−tot

)
pzD = 1

2

(
m2
⊥D

zp−tot
− zp−tot

)
The smaller the z , the less negative the pz of the D meson.
If z < m⊥D/p

−
tot it even flips sign, pz > 0.
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Factorization breakdown in fixed-target π−p

Volume 305, number 4 PHYSICS LETTERS B 20 May 1993 

1830 M e V / c  2 and f rom 1900 M e V / c  2 to 2000 M e V /  
c 2, normal ized  to the amoun t  o f  background under  
the D + and D -  peaks. The cont r ibut ion  of  this back- 
ground was then subtracted f rom the D ÷ and D -  
candidates  xF distr ibut ions.  The  D -+ sample  thus se- 
lected consists o f  322 + 20 D + - - ,K-  rt + n + on a back- 
ground o f  57 and 449 + 23 D -  --,K +rt - r t  - on a back- 
ground of  51 f rom n -  interact ions,  and  9 2 +  11 
D+---,K;:n+-rt +- on a background of  12 from p 
interact ions.  

After  acceptance correction, the rat io of  D -  over  
D + at  posi t ive xv for the n -  beam sample  is 

D - / D +  =l .34+O.13.  

The ( D -  - D  + ) / ( D -  + D  ÷ ) versus xF dis t r ibut ion 
(fig. 2) shows that  this excess of  D -  over  D ÷ in- 
creases with xr.  A combined  z2-run test [ 9 ] indicates  
that  the probabi l i ty  that  the D -  and D + normal ized  
dis t r ibut ions  be two random samplings of  the same 
l imi t  d is t r ibut ion  is less than 1%. 
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405 
(xF = p∗L/p

∗
L,max , L = longitudinal, ∗ = in CM)

WA82, Phys.Lett. B305 (1993) 402

Fragmentation function factorization

dσD

dxF
=

dσc

dxF
⊗ f (z) , 0 < z < 1 , z ≈ xF,D

xF,c
≈ ED

Ec
≈ p+D

p+c

does not work! .
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Production asymmetries in fixed-target π−p

uu→ cc pulls D forwards, while gg→ cc can pull either D or D:

cc

string pullstring pull

π−

p

u c
d

u c

ud

π−

p

c
d

c
ud

u

u

π−

p
c
u

c
u

d

ud

Asymmetry A(xF) = (σ(D−)− σ(D+))/(σ(D−) + σ(D+)):
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qq→cc @ 400 GeV

gg→cc @ 400 GeV

combined

WA82 @ 340 GeV

E769 @ 250 GeV

E791 @ 500 GeV
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Low-mass strings in fixed-target π−p

A string with small invariant mass can collapse to a single hadron,
with four-momentum conserved by exchange with other string:

cd→ D−,D∗−, . . .
cu→ D0,D∗0, . . .

}
=⇒ D± asymmetry in gg→ cc

0 1 2 3 4 5
m (GeV)

0.00

0.05

0.10

0.15

0.20
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(1
/N

) d
N

( c
+

d)
/d

m

Invariant mass  of c + d string, mc = 1.5 GeV, md = 0.33 GeV
all strings
to 1 hadron
to 2 hadrons
to 3+ hadrons

Minimum string mass given
by constituent quark masses:

mc = 1.5 GeV

md = 0.33 GeV

mcd,min = mc + md = 1.83 GeV

A choice of lower masses
would give more collapse.

In target remnant also cud→ Λ+
c ,Σ

+
c ,Σ

∗+
c , . . .; relevant for LHC?
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Fragmentation in Z0 → cc

Consider Z0 → cc→ ccg (→ . . .).
Parton showers give gluons around the cc directions,
with energy that partly can be recovered in the hadronization step.

c
D

c
c

c

note break

D

Can be viewed as the gluons helping pull forwards.
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Charm xE =2E/ECM spectra

c quarks after shower

D/D* hadrons after hadronization

D hadrons after decay
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Charm fragmentation function

f(z) with showers

f(z) without showers
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Beam drag at the LHC

At LHC, c and b quarks appear to be dragged approximately as
much forwards as backwards, with significant fluctuations.
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Quark and hadron Feynman-x spectra

charm quark

charm hadron

bottom quark

bottom hadron
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Ratio of hadron-to-quark energy (logscale)

charm

charm, Ec >100

bottom

bottom, Eb >100

Results above for inclusive sample of minimum bias events,
i.e. only a fraction of the generated events contribute.

Again fragmentation function factorization does not work!
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A closer look at beam drag (1)

Now consider only events with hard processes qq→ cc or gg→ cc,
with no c or b production in the showers. Only a few % of total c.
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c quarks after matrix element
c quarks after shower
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D hadrons after decay
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Charm xE ratios (  fragmentation functions)
z in shower
z in hadronization
z combined

Note 1: parton showers allow z > 1! Similar to string pull:
in a dipole shower the other end of the dipole can be ahead.
Then a branching like c→ c′g involves a DGLAP z .
With p−c′ = zp−c you again get p+c′ ∝ 1/z .

Note 2: significant hardening at large xE in c→ D.
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A closer look at beam drag (2)

The p⊥ spectrum behaves a bit more like naive expectations:
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Charm transverse momentum spectra
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D hadrons after decay
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Charm transverse momentum ratios
z in shower
z in hadronization
z combined

But note that the shower effect can go in either direction:
• Final-state radiation almost always decreases p⊥.
• Initial-state radiation can kick a c or c to significantly higher p⊥.
• Also primordial k⊥ can increase p⊥ some.
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A closer look at beam drag (3)

If we require p⊥,ME > 100 GeV:
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z in shower
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Now expected hierarchy of curves is there, and z > 1 less common.
The same pattern in p⊥ spectra.
Gradual transition of behaviour from low-p⊥ to high-p⊥.

Fragmentation function factorization begins to make sense
only for p⊥ > 10 GeV.

Does not help for FPF applications!
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Charm hadron composition

LHC offered a surprise!

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

Charm hadronization in pp (1):

26

More charm quarks in baryons in pp than in e+e– and ep collisions

Charm quarks hadronize into baryons 40% of the time

~ 4 times more than in e+e–

arXiv:2105.06335 talk Luigi Dello Stritto

K. Reygers, EPS-HEP 2021

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers
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)c (GeV/

T
p
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0.7

0.80
/D

+ c
Λ

ALICE
| < 0.5y|

 = 5 TeVspp, 
 = 13 TeVspp, 

PYTHIA 8.243, Monash 2013

          PYTHIA 8.243, CR-BLC:
Mode 0 Mode 2
Mode 3

SHM+RQM
Catania
QCM

ALI-DER-493847

Charm hadronization in pp (3)

28

 ratio in pp significantly different than in e+e–Λ+c /D0
arXiv:2011.06079

Charm quark fragmentation not universal!

e+e−
Standard PYTHIA 8 below data

Fair description by 
‣ PYTHIA 8 with CR 
‣ Coalescence + fragmentation (Catania) 
‣ SH mode + RQM  

(T = 170 MeV, additional states crucial)

Measurement of charmed hadrons down to 
unprecedentedly low pT at midrapidity

Λ+c (udc) → pK−π+

→ pK0s

arXiv:2106.08278

Λ+
c /D

0 four times higher
than in e+e−!
But e+e− result recovered
at large p⊥.
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QCD-based colour reconnection

Colour Reconnection (CR) is an essential component of
the Multiparton Interactions (MPI) framework.
QCDCR extension by Christiansen & Skands, JHEP 08 (2015) 003

Possible reconnections

Ordinary string reconnection

(qq: 1/9, gg: 1/8, model: 1/9)

Triple junction reconnection

(qq: 1/27, gg: 5/256, model: 2/81)

Double junction reconnection

(qq: 1/3, gg: 10/64, model: 2/9)

Zipping reconnection

(Depends on number of gluons)

Jesper Roy Christiansen (Lund) Non pertubative colours November 3, MPI@LHC 10 / 15

Mainly QCDCR at small p⊥, where there are more parallel strings.
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Bottom production asymmetries

Asymmetries predicted and observed also for charm and bottom
hadrons at the LHC, but full picture not yet clear.

uncertainties on the Pythia models shown here are only due to the limited sample size
of about 12.5 million events. The results of the Pythia hadronisation model describing
the data best, along with the predictions of the heavy-quark recombination model are
presented in Fig. 11. The uncertainties on the heavy-quark recombination model are the
systematic uncertainties given in Ref. [5]. Overall, the predictions from the heavy-quark
recombination model are consistently higher than the 8TeV measurements, but remain
within uncertainties. For Pythia, only the model CR1 shows a good agreement with
the

p
s = 7 TeV measurements but it is also consistently higher at 8TeV. The two other

tested settings predict asymmetries that are too large, exhibiting the strongest deviation
at low transverse momentum.
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Figure 10: Comparison of the ⇤0
b production asymmetry predicted by the various Pythia

models, where CR1 refers to the QCD-inspired model and CR2 refers to the gluon-move model,
and the measured production asymmetries. Results versus ⇤0

b (left) rapidity y and (right) pT are
shown for centre-of-mass energies of (top)

p
s = 7 TeV and (bottom)

p
s = 8 TeV. Uncertainties

on the predictions are due to limited simulation sample sizes.

9 Conclusions

The most precise measurements of the ⇤0
b production asymmetry in

p
s = 7 TeV and 8 TeV

proton-proton collisions have been presented. A new method to estimate asymmetries in
the interaction of protons and antiprotons with the detector material has been developed.

21

LHCb, 2107.09593

A =
σ(Λ0

b)− σ(Λ
0
b)

σ(Λ0
b) + σ(Λ

0
b)

Enhanced Λb production at low p⊥, like for Λc, dilutes asymmetry?

Torbjörn Sjöstrand Forward Charm slide 16/22



Λc production and asymmetries

Asymmetries A = (Λ+
c −Λ

−
c )/(Λ+

c −Λ
−
c ) for inclusive event sample:
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Very close to Λb behaviour above! (But not same cuts.)
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Inclusive production in three model variations

Compare inclusive (anti)charm hadron production:
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“hard remnant” = harder baryon from beam-remnant diquark.
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Issues and conclusion

Naively dσ(D) = dσ(c)⊗ Pflavour(c→ D)⊗ f (z = ED/Ec).

Such factorization is strongly broken in forward direction.

A D/B hadron can be harder than the mother c/b quark.
Beware in studies of potential intrinsic charm.
E.g.: does not affect σ(cs→W+), but well recoiling c.

Strong Λc enhancement (yet another) break of jet universality.
Need better understanding of Colour Reconnection and more.

Uncertainty also from familiar issues:
PDF, mc, αs, NLO, shower, match&merge, . . .

Spread of predictions for forward charm/bottom spectra?
Beware of models that cannot explain the (π−p) data.

Further experimental input is most welcome.
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Λc production and asymmetries (2)

Again consider only qq→ cc and gg→ cc charm production.

Default CR: QCDCR:
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1e 2 c and c rapidity spectra
c all
c beam-collapse
c beam-connected
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c all
c beam-collapse
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c junction
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1e 2 c and c rapidity spectra
c all
c beam-collapse
c beam-connected
c junction
c all
c beam-collapse
c beam-connected
c junction

• Clear signal of collapse c + udbeam → Λc.
• Clear signal of strong beam drag for Λc also without collapse.
• No similar signals for Λc.
• QCDCR adds more Λc and Λc, but centrally only.
• QCDCR increases central Λc − Λc asymmetry, unlike Λb data.
But recall that only subset of charm data, likely with some bias.
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Λc production and asymmetries (3)

Still only qq→ cc and gg→ cc, but now for p⊥ spectra.

Default CR: QCDCR:
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c and c transverse momentum spectra
c all
c beam-collapse
c beam-connected
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c all
c beam-collapse
c beam-connected
c junction

• Collapse c + udbeam → Λc gives smallest 〈p⊥〉.
• Junctions and beam-connected give intermediate 〈p⊥〉.
• Other Λc/Λc give largest 〈p⊥〉.
Again small charm subset, but physically meaningful trends.
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Λc production and asymmetries (4)

From Snowmass article:
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