

Seminar at DESY 1 March 2011

Progress on Event Generation with PYTHIA 8

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University

> Introduction and Overview Improved Showers MultiParton Interactions BSM Physics Tunes and Comparisons with LHC Data Summary and Outlook

Introduction and Overview

Modern event generators were born at DESY, for the PETRA e^+e^- collider! (1978 - 86, 13 - 46 GeV)

- Combine perturbative picture of hard processes, involving electroweak and strong interactions, with nonperturbative picture of hadronization.
- Provide "complete" events, with parameters to be tuned to data, and used to study and understand different kinds of physics.

JETSET (PYTHIA predecessor): \sim 1,000 lines of Fortran code in 1980

Events more messy at the LHC (even when simplified):

General-purpose event generators: PYTHIA, HERWIG, SHERPA PYTHIA size: \sim 80,000 lines (Fortran in PYTHIA 6, C++ in PYTHIA 8)

PYTHIA 8 ambition

- Meet experimental request for C++ code.
- House cleaning \Rightarrow more homogeneous.
- More user-friendly (e.g. settings names).
- Better match to software frameworks (e.g. card files).
- More space for growth.
- Better interfaces to external standards.

Reality

- Work begun autumn 2004.
- 3 years at CERN \Rightarrow good progress.
- First release autumn 2007.
- Since then: slower progress, requests lagging behind.
- Usage slowly taking off.

Team members Stefan Ask Richard Corke Stephen Mrenna Peter Skands

Contributors

Bertrand Bellenot Lisa Carloni Hendrik Hoeth Philip Ilten Tomas Kasemets Mikhail Kirsanov Ben Lloyd Marc Montull Sparsh Navin MSTW, CTEQ, H1: PDFs DELPHI, LHCb: D/B BRs + several bug reports & fixes

Key differences between PYTHIA 6.4 and 8.1

- Old features definitely removed include, among others:
- independent fragmentation
- mass-ordered showers

Features omitted so far include, among others:

- \bullet ep, $\gamma {\rm p}$ and $\gamma \gamma$ beam configurations
- several processes, especially Technicolor, partly SUSY

New features, not found in 6.4:

- \star fully interleaved $p_{\perp}\text{-ordered}$ MPI + ISR + FSR evolution
- \star richer mix of underlying-event processes (γ , J/ ψ , DY, ...)
- * possibility for two selected hard interactions in same event
- \star allow rescattering and x-dependent proton size in MPI framework
- * full hadron-hadron collision machinery for diffractive systems
- \star several new processes, within and beyond SM
- \star possibility to use one PDF set for hard process and another for rest
- $\star\,\tau$ lepton polarization in production and decay
- * updated decay data and LO PDF sets

Interleaved evolution

- Transverse-momentum-ordered parton showers for ISR and FSR
- MPI also ordered in p_{\perp}

Allows interleaved evolution for ISR, FSR and MPI

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathsf{MPI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathsf{ISR}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathsf{FSR}}}{\mathrm{d}p_{\perp}} \right)$$

$$\times \exp\left(-\int_{p_{\perp}}^{p_{\perp}\max} \left(\frac{\mathrm{d}\mathcal{P}_{\mathsf{MPI}}}{\mathrm{d}p'_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathsf{ISR}}}{\mathrm{d}p'_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathsf{FSR}}}{\mathrm{d}p'_{\perp}} \right) \mathrm{d}p'_{\perp} \right)$$

Ordered in decreasing p_{\perp} using "Sudakov" trick.

Corresponds to increasing "resolution":

smaller p_{\perp} fill in details of basic picture set at larger p_{\perp} .

Hybrid approach to shower recoils:

- FSR is dipole: nearest colour-connected neighbour
- ISR is traditional: whole hard-scattering system affected (since ISR dipole gives wrong answer e.g. for $p_{\perp Z}$)

Shower matching to MEs – I

Aim: provide better default shower behaviour at large p_{\perp} , to bridge gap between "power" and "wimpy" showers.

No dampening for uncoloured final state (W^+W^- , ..., SUSY). R. Corke & TS, Eur. Phys. J. C69 (2010) 1 (+ improved interfacing to POWHEG, ...)

Shower matching to MEs - II

Must avoid doublecounting for QCD jets: shower starting scale = p_{\perp} of hard 2 \rightarrow 2 process.

Study how well the parton shower fills the phase space, as prelude to full matching to $2 \rightarrow 3$ real-emission:

Obtain good qualitative agreement, best in soft and collinear regions, but large region of phase space well described, and only corners bad. No indication for needing a change in starting scale! R. Corke & TS, arXiv:1011.1759 [hep-ph]

A second hard process

Multiparton interactions key aspect of PYTHIA since > 20 years. Central to obtain agreement with data: Tune A, Professor, Perugia, ...

Before 8.1 no chance to select character of second interaction. Now free choice of first process (including LHA/LHEF) *and* second process combined from list:

- TwoJets (with TwoBJets as subsample)
- PhotonAndJet, TwoPhotons
- Charmonium, Bottomonium (colour octet framework)
- SingleGmZ, SingleW, GmZAndJet, WAndJet
- TopPair, SingleTop

Can be expanded among existing processes as need arises.

By default same phase space cuts as for "first" hard process \implies second can be harder than first.

However, possible to set \hat{m} and $\hat{p_{\perp}}$ range separately.

Multiparton interactions

Regularise cross section with $p_{\perp 0}$ as free parameter

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}(p_{\perp0}^{2}+p_{\perp}^{2})}{(p_{\perp0}^{2}+p_{\perp}^{2})^{2}}$$

with energy dependence

$$p_{\perp 0}(E_{\rm CM}) = p_{\perp 0}^{\rm ref} \times \left(\frac{E_{\rm CM}}{E_{\rm CM}^{\rm ref}}\right)^{\epsilon}$$

Matter profile in impact-parameter space gives time-integrated overlap which determines level of activity: simple Gaussian or more peaked variants

ISR and MPI compete for beam momentum \rightarrow PDF rescaling

- + flavour effects (valence, $q\overline{q}$ pair companions, ...)
- + correlated primordial k_{\perp} and colour in beam remnant

Many partons produced close in space–time \Rightarrow colour rearrangement; reduction of total string length \Rightarrow steeper $\langle p_{\perp} \rangle (n_{ch})$

Rescattering

Same order in α_{s} , \sim same propagators, but

- one PDF weight less \Rightarrow smaller σ
- one jet less \Rightarrow QCD radiation background 2 \rightarrow 3 larger than 2 \rightarrow 4
- \Rightarrow will be tough to find direct evidence.

Rescattering grows with number of "previous" scatterings:

	Tevatron		LHC	
	Min Bias	QCD Jets	Min Bias	QCD Jets
Normal scattering	2.81	5.09	5.19	12.19
Single rescatterings	0.41	1.32	1.03	4.10
Double rescatterings	0.01	0.04	0.03	0.15

R. Corke & TS, JHEP 01 (2010) 035 [arXiv:0911.1909]

Normally assume that PDFs factorize in longitudinal and transverse space:

 $f(x,r) = f(x) \rho(r)$

In contradiction with

- \bullet intuitive picture of partons spreading out by cascade to lower \boldsymbol{x}
- formally BFKL, Balitsky-JIMWLK, Colour Glass Condensate, ...
- Mueller's dipole cascade (Lund program: DIPSY; study by Avsar)
- Froissart-Martin $\sigma_{tot} \propto \ln^2 s$ by Gribov theory related to $r_p \propto \ln(1/x)$
- generalized parton distributions, ...

For now address only inelastic nondiffrative events, $\sigma_{tot} = \sigma_{el} + \sigma_{SD} + \sigma_{DD} + \sigma_{ND}$, with ansatz:

$$\rho(r,x) \propto \frac{1}{a^3(x)} \exp\left(-\frac{r^2}{a^2(x)}\right) \quad \text{with} \quad a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x}\right)$$

 $a_1 \approx 0.15$ tuned to **rise** of σ_{ND} in Donnachie & Landshoff + Schuler & TS a_0 tuned to **value** of σ_{ND} , given PDF, $p_{\perp 0}$, ...

R. Corke & TS, arXiv:1101.5953

Convolution of two incoming protons gives impact parameter shape

$$\tilde{\mathcal{O}}(b;x_1,x_2) = \frac{1}{\pi} \frac{1}{a^2(x_1) + a^2(x_2)} \exp\left(-\frac{b^2}{a^2(x_1) + a^2(x_2)}\right)$$

Define $\overline{n}(b)$ as average number of interactions for passage at b

$$\overline{n}(b) = \sum_{i,j} \iiint \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}p_{\perp}^2 f_i(x_1, p_{\perp}^2) f_j(x_2, p_{\perp}^2) \left. \frac{\mathrm{d}\widehat{\sigma}_{ij}}{\mathrm{d}p_{\perp}^2} \right|_{\mathrm{reg}} \widetilde{\mathcal{O}}(b; x_1, x_2)$$
such that $\sigma_{\mathrm{hard}} = \int \overline{n}(b) \, \mathrm{d}^2 b$

$$\sigma_{\mathrm{ND}} = \int P_{\mathrm{int}} \, \mathrm{d}^2 b = \int \left(1 - e^{-\overline{n}(b)}\right) \mathrm{d}^2 b$$

Consequence: collisions at large x will have to happen at small b, and hence further large-to-medium-x MPIs are enhanced, while low-x partons are so spread out that it plays less role.

Diffraction

Ingelman-Schlein: Pomeron as hadron with partonic content Diffractive event = (Pomeron flux) \times (Pp collision)

1) σ_{SD} and σ_{DD} taken from existing parametrization or set by user.

2) Shape of Pomeron distribution inside a proton, $f_{\mathbb{P}/p}(x_{\mathbb{P}}, t)$ gives diffractive mass spectrum and scattering p_{\perp} of proton.

3) At low masses retain old framework, with longitudinal string(s). Above 10 GeV begin smooth transition to Pp handled with full pp machinery: multiple interactions, parton showers, beam remnants,

4) Choice between 5 Pomeron PDFs.

Free parameter $\sigma_{\mathbb{P}p}$ needed to fix $\langle n_{\text{interactions}} \rangle = \sigma_{\text{jet}} / \sigma_{\mathbb{P}p}$.

5) Framework needs testing and tuning, e.g. of $\sigma_{\mathbb{P}p}$.

p_T Distributions ($\sqrt{s}=0.9$ TeV)

- Softer p_T spectrum in
 Pythia6 due to lack of high mass diffraction
- Pythia8 and Phojet agree quite well

10

Beate Heinemann, MB/UE Working Group (also Sparsh Navin)

BSM Physics 1: *R*-parity violation

Encountered in *R*-parity violating SUSY decays $\tilde{\chi}_1^0 \rightarrow uds$, or when 2 valence quarks kicked out of proton beam

BSM Physics 2: *R*-hadrons

What if coloured (SUSY) particle like \tilde{g} or \tilde{t}_1 is long-lived?

* Formation of R-hadrons $\tilde{g}q\overline{q} | \tilde{t}_1\overline{q} |$ "mesons" $\tilde{g}qqq | \tilde{t}_1qq |$ "baryons"

ĝg

- "glueballs"
- ★ Conversion between *R*-hadrons by "low-energy" interactions with matter: $\tilde{g}ud + p \rightarrow \tilde{g}uud + \pi^+$ irreversible
- * Displaced vertices if finite lifetime, or else
- * punch-through: $\sigma \approx \sigma_{had}$ but $\Delta E \lesssim 1 \text{ GeV} \ll E_{kin,R}$

A.C. Kraan, Eur. Phys. J. C37 (2004) 91;M. Fairbairn et al., Phys. Rep. 438 (2007) 1

CMS, arXiv:1101.1645

Partly event generation, partly detector simulation. Public add-on in PYTHIA 6, soon integrated part of PYTHIA 8.

BSM Physics 3: Hidden Valley (Secluded Sector)

What if new gauge groups at low energy scales, hidden by potential barrier or weak couplings? (M. Strassler & K. Zurek, ...)

Complete framework implemented in PYTHIA:

- * New gauge group either Abelian U(1) or non-Abelian SU(N)
- * 3 alternative production mechanisms
 - 1) massive Z': $q\overline{q} \rightarrow Z' \rightarrow q_v \overline{q}_v$
 - 2) kinetic mixing: $q\overline{q} \rightarrow \gamma \rightarrow \gamma_v \rightarrow q_v \overline{q}_v$
 - 3) massive F_v charged under both SM and hidden group

L. Carloni & TS, JHEP 1009 (2010) 105; L. Carloni, J. Rathsman & TS, arXiv:1102.3795

- * Hidden Valley particles may remain invisible, or ...
- * Broken U(1): γ_v acquire mass, radiated γ_v s decay back $\gamma_v \rightarrow \gamma \rightarrow f\bar{f}$ with BRs as photon (\Rightarrow lepton pairs!)
- * SU(N): hadronization in hidden sector, with full string fragmentation, permitting up to 8 different q_v flavours and 64 $q_v \overline{q}_v$ mesons, but for now assumed degenerate in mass, so only distinguish
 - off-diagonal, flavour-charged, stable & invisible
 - diagonal, can decay back $q_v \overline{q}_v \rightarrow f\overline{f}$

Even when tuned to same average activity, hope to separate U(1) and SU(N):

Tuning prospects

Tuning to e^+e^- closely related to p_\perp -ordered PYTHIA 6.4; Rivet+Professor (H. Hoeth) \Rightarrow FSR & hadronization OK (?)

First tuning to MB data by P. Skands:

 \Rightarrow MPI & colour reconnection OK (?)

But Rivet+Professor (H. Hoeth) shows it fails miserably for UE (Rick Field's transverse flow as function of jet p_{\perp}):

No universal tune MB + UE! Where did we go wrong?

Final-state parton may have colour partner in the initial state. How to subdivide FSR and ISR in this kind of dipole? Large mass \rightarrow large rapidity range for emission:

Solution: suppress final-state radiation in double-counted region

Is a simultaneous MB/UE Tevatron tune now possible? Tunes 2C and 2M done "by hand" (= using Rivet, but not Professor), using the CTEQ6L1 and MRST LO** PDF sets, respectively, to MB data $(n_{ch}, \langle p_{\perp} \rangle (n_{ch}), \dots$ Compare against Pro-Q20 and Perugia 0 (PYTHIA6)

Now generally comparably good description to old tunes at the Tevatron.

Tune 2C applied to LHC data does not do so good:

Tension between Tevatron and LHC data?

Rick Field: if $p_{\perp 0}(E_{CM}) \propto E_{CM}^{\epsilon}$ tuned to LHC data, then gives too much UE activity at Tevatron (\Rightarrow need higher $p_{\perp 0}$ to compensate)

Pick some key LHC data sets, use Tune 2C as starting point:

- slightly dampen diffractive cross section (ATLAS)
- only vary MPI and colour reconnection parameters

New tunes

... while waiting for LHC data conveniently implemented in Rivet.

Parameter	Tune 2C	Tune 2M	Tune 4C
SigmaProcess:alphaSvalue	0.135	0.1265	0.135
SpaceShower:rapidityOrder	on	on	on
SpaceShower:alphaSvalue	0.137	0.130	0.137
SpaceShower:pT0Ref	2.0	2.0	2.0
MultipleInteractions:alphaSvalue	0.135	0.127	0.135
MultipleInteractions:pTORef	2.320	2.455	2.085
MultipleInteractions:ecmPow	0.21	0.26	0.19
MultipleInteractions:bProfile	3	3	3
MultipleInteractions:expPow	1.60	1.15	2.00
BeamRemnants:reconnectRange	3.0	3.0	1.5
SigmaDiffractive:dampen	off	off	on
SigmaDiffractive:maxXB	N/A	N/A	65
SigmaDiffractive:maxAX	N/A	N/A	65
SigmaDiffractive:maxXX	N/A	N/A	65

R. Corke & TS, arXiv:1011.1759 [hep-ph]

(recently also variant of 4C with *x*-dependent proton size)

Tune 4C now describes LHC data reasonably well:

... but at the expense of Tevatron agreement:

Future:

- better understanding of data?
- official/validated inclusion in Rivet?
- combined tune Tevatron + LHC?

Generally fares well when compared with HERWIG++ and SHERPA:

A. Buckley et al., MCnet/11/01, arXiv:1101.2599

What next?

Need more p_{\perp} for K, p, Λ , ..., relative to π^{\pm} :

Bose-Einstein $r(N_{ch}) \propto N_{ch}^{1/3}$ cannot be accommodated in PYTHIA effective description that worked at LEP

Multiple overlapping fragmenting strings \Rightarrow dense hadron gas!

Target: model for rescattering as afterburner. Do not need to change particle composition (significantly), only (partial) collective flow?

So the event picture at the LHC will have to become even more messy:

The road leads to more complexity, not less.

Another example: matching to NLO, NNLO (VINCIA; Lönnblad & Prestel). The need for experiment \leftrightarrow generators \leftrightarrow theory remains.

Summary and Outlook

- PYTHIA6 is winding down:
 - * is supported but not developed;
 - * still main option for current run (sigh),
 - * but not after long shutdown 2013!
- PYTHIA8 is the natural successor,
 - * is (sadly!) not yet quite up to speed in all respects,
 - \star but for much already better than PYTHIA6,
 - \star is starting to have competitive tunes,
 - \star and will continue to move ahead.
 - \star Version 8.150 coming soon with the features mentioned here.
- Advise to experimentalists:
 - * step up PYTHIA8 usage to gain experience;
 - * if you want new features then be prepared to use PYTHIA8;
 - * provide feedback, both what works and what does not;
 - \star do your own tunes to data and tell outcome.

We are living in an exciting time, and more is to come!