

Colour Reconnections from LEP to Future Colliders: Introduction and PYTHIA models

Torbjörn Sjöstrand

Theoretical Particle Physics Department of Astronomy and Theoretical Physics Lund University

Workshop on Parton Radiation and Fragmentation from LHC to FCC-ee, CERN, 21-22 November 2016

Colour Reconnection in B decays

Colour operators in B decay \Rightarrow some η_c : A. Ali, J.G. Körner, G. Kramer, J. Willrodt, Z. Phys. **C1** (1979) 269

 $B \rightarrow J/\psi \rightarrow \mu^+\mu^-$ good way to find B mesons: H. Fritzsch, Phys. Lett. **B86** (1979) 164, 343

... soon confirmed by experiment

 $g^* \rightarrow c\overline{c} \rightarrow J/\psi$ production mechanism in pp ("colour octet") H. Fritzsch, Phys. Lett. **B67** (1977) 217 more complicated to test (at the time, later "confirmed")

Colour Reconnection at $\mathsf{Sp}\overline{p}\mathsf{S}$

T.S. and M. van Zijl, Phys.Rev. **D36** (1987) 2019

FIG. 27. Average transverse momentum of charged particles in $|\eta| < 2.5$ as a function of the multiplicity. UAI data points (Ref. 49) at 900 GeV compared with the model for different assumptions about the nature of the subsequent (nonhardest) interactions. Dashed line, assuming $q\bar{q}$ scatterings with 'maximal' string length; solid line gg scatterings with 'maximal' string length.

$\langle p_{\perp} \rangle (n_{\rm ch})$ sensitive to colour flow.

long strings to remnants ⇒ comparable n_{ch} /interaction ⇒ $\langle p_{\perp} \rangle (n_{ch}) \sim$ flat.

shorter extra strings for each consecutive interaction $\Rightarrow \langle p_{\perp} \rangle (n_{ch})$ rising.

Short vs. long strings: the λ measure

 λ is intended to gauge "phase space" for hadron production, $\lambda \propto \langle n_{\rm hadrons} \rangle \propto \langle n_{\rm charged} \rangle$. For simple $q\overline{q}$ string:

$$\lambda = \ln\left(rac{m_{
m q\overline{q}}^2}{m_0^2}
ight)$$

with $m_0\approx 1~\text{GeV}$ measure of hadronic mass scale. For $\mathrm{q}\overline{\mathrm{q}}\mathrm{g}$ instead

$$\lambda = \ln\left(\frac{m_{\mathrm{q}\overline{\mathrm{q}g}}^2}{m_0^2} + \frac{m_{\mathrm{qg}}^2 m_{\overline{\mathrm{qg}}}^2}{4m_0^4}\right) \approx \ln\left(\frac{p_{\mathrm{q}} + \frac{1}{2}p_g)^2}{m_0^2}\right) + \ln\left(\frac{p_{\overline{\mathrm{q}}} + \frac{1}{2}p_g)^2}{m_0^2}\right)$$

with simplification in limit $p_{\perp g} \gg m_0$. More generally, for $q_0 g_1 g_2 \cdots g_n \overline{q}_{n+1}$, with factor $\frac{1}{2}$ for gluon momentum,

$$\lambda \approx \sum_{i=0}^{n} \ln\left(\frac{m_{i,i+1}^2}{m_0^2}\right) \approx \sum_{i=0}^{n} \ln\left(1 + \frac{m_{i,i+1}^2}{m_0^2}\right)$$

Interconnection at LEP 2

 $e^+e^- \rightarrow W^+W^- \rightarrow q_1 \overline{q}_2 q_3 \overline{q}_4$ reconnection limits m_W precision!

- perturbative CR $\langle \delta M_W \rangle \lesssim 5$ MeV : negligible! (killed by dampening from off-shell W propagators)
- nonperturbative CR $\langle \delta \textit{M}_{\rm W} \rangle \sim$ 40 MeV
- Bose-Einstein $\langle \delta M_{\rm W} \rangle \sim$ 40 MeV

V.A. Khoze & TS, PRL 72 (1994) 28;

L. Lönnblad & TS, EPJ C6 (1999) 271

PYTHIA CR models for LEP 2

Colour reconnection studied in several models, e.g.

Scenario II: vortex lines. Analogy: type II superconductor. Strings can reconnect only if central cores cross.

Scenario I: elongated bags. Analogy: type I superconductor. Reconnection proportional to space-time overlap.

In both cases favour reconnections that reduce total string length.

(schematic only; nothing to scale)

PYTHIA CR results at LEP 2

r: order 4 jets
 as projected onto plane,
 compare activity
 between jets

Best LEP2 fit 2013 (topology + mass): 51% of 189 GeV events reconnected in SKI model.

No-CR excluded at 99.5% CL.

Comparison of CR models at LEP

authors	Khoze	Todorova	Gustafson	Lönnblad	Webber
	Sjöstrand		Häkkinen		
reference	[52]	[59]	[53, 66]	[57]	[58]
based on	Pythia		Ariadne		HERWIG
reconnection	space–time overlap (I)		string length		cluster space–time
criterion	or crossing (II) of strings		reduced		sizes reduced
reconnection	I: free	parameter	free	partly	free
probability	II: partl	y predicted	parameter	predicted	parameter
model of	yes	yes	no	yes	yes
all events					
space–time pictu	re implemer	nted for	(= not applicable)		
W vertices	yes	yes	no	no	yes
parton shower	no	yes	—	_	yes
fragmentation	yes	yes	—	_	—
multiple	no	yes	yes	yes	yes
reconnections					
reconnection	no	yes	yes	yes	yes
inside W/Z					
change of event	almost		small but	visible, needs	large, needs
properties	invisible		visible	retuning	retuning

+ some more, notably Ellis, Geiger:

space–time hadronization model $\Rightarrow \Delta m_{\rm W} \sim 400~{\rm MeV}$

Combined result of 0.17 ± 0.13 of full model effects

 \Rightarrow at most 7 MeV effect on W mass.

CR at HERA (and beyond)

Rapidity gaps observed at HERA: "diffractive DIS"

conventionally Pomeron explanation, but . . .

Ingelman et al. (Uppsala): SCI – Soft Colour Interactions Extended to $pp/p\overline{p}$ and e^+e^- , for quarkonium, W, Higgs, gaps between (Tevatron) jets, diffraction, etc.

Rathsman: GAL – Generalized Area Law: $P_{\rm rec} = 1 - \exp(-b\Delta A)$ where $A \approx \sum m^2$ unlike $\lambda \approx \sum \ln m^2 = \ln \prod m^2$

Reconnection at the LHC

 $\langle p_{\perp}
angle (n_{\rm ch})$ effect alive and kicking:

PYTHIA CR models for the LHC

Space-time models (a la LEP) too complicated and uncertain at the LHC \Rightarrow simplified (in PYTHIA)

Common aspect: reduce string length $\lambda = \sum \ln(m_{ij}^2/m_0^2)$

In total 12 scenarios in PYTHIA 6, mainly annealing (P. Skands):

- $P_{\text{reconnect}} = 1 (1 \chi)^{n_{\text{MPI}}}$ with χ strength parameter.
- Random assignment by $P_{\rm reconnect}$ for each string piece.
- Choose new combinations that reduce λ (with restrictions).

PYTHIA 8 initially only one model:

- probability for a lower- p_{\perp} MPI to merge with a higher- p_{\perp} is $P = r^2 p_{\perp 0}^2 / (r^2 p_{\perp 0}^2 + p_{\perp \text{lower}}^2)$, with r tuning parameter
- each gluon of the lower-p⊥ MPI is put where it increases the λ the least for the higher-p⊥ MPI
- $(g \rightarrow)q\overline{q}$ pairs in same sprit, else q's connect to beams
- iterative, so $P_{
 m tot} = 1 (1-P)^{n_>}$, $n_> = \#$ MPI with $> p_\perp$

HERWIG++ CR models for the LHC

S. Gieseke, C. Röhr, A. Siódmok, EPJ C72 (2012) 2225

1) Plain CR: loop once through all q ends of clusters, reconnect clusters A and B into C and D by \overline{q} swap if $m_C + m_D < m_A + m_B$. Pick smallest if many possibilities for given A. Probability p_{reco} .

2) Statistical CR: (non-default) minimize $\sum m_{\text{cluster}}^2$ by simulated annealing. Charged particle η at 900 GeV, track $p_{\perp} > 500$ MeV, for $N_{\text{ch}} \ge 6$

The new QCD-based CR model (1)

J. Christiansen & P. Skands, JHEP 1508 (2015) 003: New model relies on two main principles * **SU(3)** colour rules give allowed reconnections

 \star minimal λ measure gives preferred reconnections

The new QCD-based CR model (2)

1.5 2

-0.5 0 0.5

The top mass uncertainty from CR

Decays occur when p "pancakes" have passed, after MPI/ISR/FSR with $p_{\perp} \ge 2$ GeV, but inside hadronization colour fields.

Experimentalists achieve impressive m_t precision, e.g. CMS $m_t = 172.35 \pm 0.16 \pm 0.48$ GeV (PRD93 (2016) 072004), whereof CR ± 0.10 GeV from PYTHIA 6.4 Perugia 2011 |CR - noCR| Is this realistic?

S. Argyropoulos & TS, JHEP 1411 (2014) 043:

Late t decay: first ordinary CR (existing model) as if t stable, then CR between g's from t&W decays and g's from rest of event, in 5 variants, some "straw-man", e.g. random ($\Rightarrow \langle \lambda \rangle$ increases)

Early t decay: new "gluon-move" model for whole event 1) move: remove gluon and insert on other string if reduces λ

Effects on top mass before (re)tuning

Asymmetric spread: $\Delta m_{top} < 0$ easy, $\Delta m_{top} > 0$ difficult. Parton showers already prefer minimal λ . Main effect from jet broadening, some from

jet-jet angles.

Effects on top mass after (re)tuning

No publicly available measurements of UE in top events.

- Afterburner models tuned to ATLAS jet shapes in $t\bar{t}$ events \Rightarrow high CR strengths disfavoured.
- Early-decay models tuned to ATLAS minimum bias data
 - \Rightarrow maximal CR strengths required to (almost) match $\langle p_{\perp} \rangle (n_{\rm ch})$.

model	$\Delta m_{\rm top}$	
	rescaled	
default (late)	+0.239	
forced random	-0.524	
swap	+0.273	

 $\Delta m_{
m top}$ relative to no CR

 $m_{\rm top}^{\rm max} - m_{\rm top}^{\rm min} \approx 0.80$ GeV

Excluding most extreme (unrealistic) models down to

 $m_{top}^{max} - m_{top}^{min} \approx 0.50$ GeV

(in line with Sandhoff, Skands & Wicke)

Studies of top events could help constrain models:

- jet profiles and jet pull (skewness)
- underlying event

CR at future $\mathrm{e^+e^-}$ colliders

J. Christiansen & TS, EPJ C75 (2015) 9, 441

FCC-ee promises $\Delta m_{
m W} \le 1$ MeV in semileptonic decays \Rightarrow test models e.g. by $m_{
m W}$ shift in hadronic decays

Model	$\langle \delta \overline{m}_{ m W} angle$ (MeV)				
model	170 GeV	240 GeV	350 GeV		
SK-I	+18	+95	+72		
SK-II	-14	+29	+18		
SK-II'	-6	+25	+16		
GM-I	-41	-74	-50		
GM-II	+49	+400	+369		
GM-III	+2	+104	+60		
CS	+7	+9	+4		

Further handles: different m_W defs. flow between jets charged multiplicity

. . .

SK: LEP 2 space-time based models
GM: variants of "gluon move" model introduced for top studies (I: only move; II: only flip; III: both)
CS: QCD-based model of Christiansen & Skands

Higgs CP Violation (1)

Is the 125 GeV Higgs a pure CP-even state? Any odd admixture?

For LHC and future e^+e^- (& $\mu^+\mu^-$?) colliders to probe. One possibility is $H^0 \rightarrow W^+W^- \rightarrow q_1\overline{q}_2q_3\overline{q}_4$. Angular correlations put limits on odd admixture.

But: colour reconnection \Rightarrow shifted jet directions \Rightarrow shifted angular correlations.

Conclusion 1: only problem for constraints f < 0.03 - 0.05.

Conclusion 2:

precision physics is not only a matter of higher orders.

CR and collective flow

Collective flow observed in pp at LHC. Partly unexpected. New mechanisms required; could also (partly) replace CR. Active field, e.g. N. Fischer & TS, arXiv:1610:09818 [hep-ph]:

- Thermal $exp(-p_{\perp}/T) \rightarrow exp(-m_{\perp}/T)$ hadronic spectrum.
- Close-packed strings \Rightarrow increased string κ or T.
- Dense hadronic gas \Rightarrow hadronic rescattering.

Torbjörn Sjöstrand

$\mathsf{LEP}/\mathsf{FCC}\text{-}\mathrm{ee}\text{:}$

- CR convincingly demonstrated at LEP 2, but not iron-clad.
- Future high statistics & precision would distinguish models.
- CR could influence precision studies, e.g. Higgs CR.

LHC/FCC-pp:

- Historically introduced to explain $\langle p_{\perp} \rangle (n_{\rm ch})$.
- Later key for many observables, e.g. UE "pedestal effect".
- Wide range of models, but usually involving λ minimization (for PYTHIA strings; size or mass for HERWIG clusters).
- New observations of collective flow, from ridge and v_n to a change of flavour composition with event multiplicity ⇒ traditional PYTHIA framework under attack!
- QGP? String close-packing? Hadronic rescattering? Other? Most likely (?): cocktail of effects, including CR.