Top-quark physics with PYTHIA

Christian T Preuss (University of Wuppertal)

LHC TOP WG Meeting 30/11/2023

BERGISCHE UNIVERSITÄT WUPPERTAL

Top production in PYTHIA

Resonance-final showers

The MC "truth" top-quark mass distribution in PYTHIA

First step: $\frac{\Gamma_t}{m_t} \ll 1 \Rightarrow$ factorise production and decay(s) ("pole approximation") + Breit-Wigner-improved pole approximation \Rightarrow tops with BW mass distribution (skewed by PDF effects: more incoming partons at lower invariant masses)

Note: for external events (POWHEG, MC@NLO, ...) this might be done differently. Slide adapted from P. Skands.

Radiative corrections – PYTHIA

PYTHIA's default shower model ("simple shower") is anchored in collinear (DGLAP) limits \Rightarrow Separate initial-state, final-state, and resonance-decay showers

Coherence for soft radiation across these boundaries is not automatic No notion of resonance-final recoils, must use final-final ones instead.

Radiative corrections – VINCIA

Bremsstrahlung

Colour flow determines (leading-colour) coherent radiation pattern

Coherence in top decays [Brooks, Skands 1907.08980]

First emission: not much difference

Phase space: limit set by $m_t - m_W$ in both cases **Recoils**: VINCIA RF recoils to $t - b = W \leftrightarrow$ PYTHIA FF recoils to W **RF pattern suppressed at wide angles** compared to DGLAP (but PYTHIA has **MEC**)

Coherence in top decays [Brooks, Skands 1907.08980]

Second emission: big differences

Neither controlled by POWHEG nor by MECs.

Not as important as first emission, but still highly significant if goal is per-mille precision on m_t .

Radiative corrections - consequences [Brooks, Skands 1907.08980]

Interleaved EW showers

EW showers [Kleiss, Verheyen 2002.09248]

Real corrections: EW gauge bosons, tops, Higgs part of jets **Virtual corrections**: universal Sudakov logs of type $\frac{\alpha}{\pi} \log^2 \left(\frac{s}{Q_{EW}^2}\right)$

Features of the EW sector

•Chiral → Helicity showers

Larkoski, Lopez-Villarejo, Skands 1301.0933 Fischer, Lifson, Stands, 1708.01736

- EW-scale mass corrections
- ·Longitudinal polarisations / Goldstone bosons
- Neutral boson interference
- Double-counting between QCD and EW
- ·Resonance-like branchings

EW antenna functions

Every SM 1 \rightarrow 2 splitting included ($V \rightarrow f\bar{f}, V \rightarrow VH, H \rightarrow HH, ...$) $\Rightarrow O(1000)$ different branching types (helicity dependent!)

$$\begin{split} g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (v-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \frac{1}{x_{1}} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (v-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \frac{x_{1}^{2}}{x_{1}} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (v-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \frac{x_{1}^{2}}{x_{1}} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (w-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \frac{x_{1}^{2}}{x_{1}} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (w-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \frac{x_{1}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (w-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \frac{x_{1}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (w-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} x_{1} \\ g_{f_{r-r/1}^{(V)}(v)}^{(V)} &= (w-\lambda a)^{2} \frac{m_{0}^{2}}{(m_{0}^{2}-m_{1}^{2})^{2}} x_$$

Overlap veto

Overlap veto - in action

[Brooks, Skands, Verheyen 2108.10786]

Finite-width effects

Slide adapted from P. Skands.

Physically, **short-lived fluctuations** do not have time to form **long-wavelength emissions**. In **parton showers**, this is reflected by **strong ordering**.

However, resonance decays are usually treated sequentially; no strong ordering!

Small modifications to resonance shape W^+ W^+

Expect initial-final interference effects at scales below Γ_t

Interleaved resonance decays

Slide adapted from R. Verheyen.

Sequential

- Complete evolution of the hard system
- Perform resonance shower

Interleaved

- Evolution up to offshellness scale of the resonance
- Perform resonance shower
- Insert showered decay products and continue evolution

Interleaved resonance decays – consequences

[Brooks, Skands, Verheyen 2108.10786]

Matching (and) Uncertainties

MC@NLO and MC@NLO- Δ with PYTHIA

Reduction of negative weights in MC@NLO-type matching: MC@NLO- Δ [Frederix, Frixione, Prestel, Torrielli 2002.12716]

$$\begin{split} & \mathsf{d}\sigma^{\Delta,\mathrm{H}} = \left(\,\mathsf{d}\sigma^{\mathsf{NLO},\mathsf{E}} - \,\mathsf{d}\sigma^{\mathsf{MC}}\right)\Delta \\ & \mathsf{d}\sigma^{\Delta,\mathrm{S}} = \,\mathsf{d}\sigma^{\mathsf{MC}}\Delta + \sum_{\alpha}\,\mathsf{d}\sigma^{\mathsf{NLO},\alpha} + \,\mathsf{d}\sigma^{\mathsf{NLO},\mathsf{E}}(1-\Delta) \end{split}$$

with (Sudakov-like) factor

$$0 \leq \Delta \leq 1\,, \quad \Delta o egin{cases} 0 & ext{soft and collinear} \ 1 & ext{hard regions} \end{cases}$$

Supported since PYTHIA 8.309.

Two different matching methods! ⇒ systematic differences beyond formal NLO accuracy.

Note: still only default "simple shower" with global recoil supported by MADGRAPH _AMC@NLO!

Matching uncertainties in MiNNLO_{PS}+PYTHIA

ightarrow Katharina Voß' talk

MiNNLO_{PS} achieves formal NNLO accuracy in showered $t\bar{t}$ events [Mazzitelli et al. 2012.14267].

$$ilde{B}_{0j} = \, \mathsf{e}^{- ilde{S}_{0j}} \left[B_{1j} \left(1 + rac{lpha_{\mathsf{s}}}{2\pi} ilde{S}_{0j}^{(1)}
ight) + V_{1j} + R_{1j} + D_{0j}^{\geq 3} F_{1j}^{\mathsf{corr}}
ight]$$

 \sim Sudakov_{0j} × [POWHEG_{1j} + corrections]

Problem: mismatch between "POWHEG p_T " and "PYTHIA p_T " leaves "matching scale"ambiguous despite vetoed showers[Hamilton et al. 2301.09645]

[ATLAS Collaboration ATL-PHYS-PUB-2023-029]

 \Rightarrow Need to consider *matching uncertainties* separately from renormalisation scale variations!

Towards fully-differential NNLO+PS [Campbell, Höche, Li, CTP, Skands 2108.07133]

Idea: "POWHEG at NNLO" without auxiliary scales and approximations

$$\langle O \rangle_{\rm NNLO+PS}^{\rm VinCIA} = \int d\Phi_2 \, {\rm B}(\Phi_2) [k_{\rm NNLO}(\Phi_2)] \mathcal{S}_2(t_0, O)$$

local K-factor shower operator

Need:

- (1) Born-local NNLO K-factors
- (2) shower filling ordered and unordered regions of 1- and 2-emission phase space
- (3) tree-level MECs in ordered and unordered shower paths
- (4) NLO MECs in the first emission

Valid for all shower components (FF, IF, II, RF), can be iterated $(t \rightarrow bW, W \rightarrow q\bar{q}', ...)$.

NNLO+PS matching in resonance decays

By construction, partial width is accurate to NNLO.

NNLO accuracy at Born level also implies NLO correction in first emission and LO correction in second emission.

Conclusions

		Coherence $pp \rightarrow t\bar{t}$ shower $t \rightarrow bW$ shower		Mass effects for <i>b</i> (and <i>t</i>)	Finite-Width effects (Γ_t, Γ_W)	$Matrix-Ele$ $pp \rightarrow t\bar{t} \text{ shower}$	ment Corrections $t \rightarrow bW(\rightarrow q\bar{q})$ showers
Ç	Ð	~ Approximate dipole treatment	Best is recoilToTop?	Via iterated MECs	e BW + Sequential Decays	→ use PowHeg	$1_{1 \text{ order MECs for } t \rightarrow bWg \& W \rightarrow q\bar{q}g}$
	VINCIA	(V) Coherent Initial-Final and R + global (coherent) res ()F and FF recoils still for	(√) esonance-Final antennae onance-final recoils. cal → ongoing work.)	Massive eikonals & exact massive antenna phase spaces	(V) BW + Interleaved Decays. (Still missing a formal proof)	(Noter development. Can also use PowHeg	$\bigotimes \to 2$ Under development. MECs up to $r \to bWgg$ & $W \to q\bar{q}gg$

Adapted from P. Skands.

VINCIA as of PYTHIA 8.310:

RF shower, interleaved EW shower, multipole QED shower, CKKW-L merging, POWHEG hooks Soon:

NNLO MECs in resonance decays

PYTHIA helpdesk authors@pythia.org Stay tuned: pythia-news@cern.ch

VINCIA tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf

Backup

Resonance matching

Branchings like $t \to bW_{-} Z \to q\bar{q}$ etc.

- Large scales: EW shower offers best description
- Small scales: Breit-Wigner distribution

$$BW(Q^2) \propto \frac{m_0 \Gamma(m)}{Q^4 + m_0^2 \Gamma(m)^2}$$

Matching:

- Sample mass from Breit-Wigner upon production
- · Suppress shower by factor

$$\frac{Q^4}{(Q^2 + Q_{\rm EW}^2)^2}$$

· Decay when shower hits off-shellness scale

NNLO+PS with sector showers

Key aspect

up to matched order, include process-specific NLO corrections into shower evolution:

(1) correct first branching to exclusive (< t') NLO rate:

$$\Delta^{\mathrm{NLO}}_{2\mapsto3}(t_0,t') = \exp\left\{-\int_{t'}^{t_0} d\Phi_{+1} \operatorname{A}_{2\mapsto3}(\Phi_{+1}) w^{\mathrm{NLO}}_{2\mapsto3}(\Phi_2,\Phi_{+1})\right\}$$

(2) correct second branching to LO ME:

$$\Delta_{3\mapsto4}^{\mathrm{LO}}(t',t) = \exp\left\{-\int_{t}^{t'} \mathrm{d}\Phi_{+1}' \mathrm{A}_{3\mapsto4}(\Phi_{+1}') w_{3\mapsto4}^{\mathrm{LO}}(\Phi_{3},\Phi_{+1}')\right\}$$

(3) add direct $2 \mapsto 4$ branching and correct it to LO ME:

$$\Delta_{2\mapsto4}^{\mathrm{LO}}(t_0,t) = \exp\left\{-\int_t^{t_0} \mathrm{d}\Phi_{+2}^> \mathrm{A}_{2\mapsto4}(\Phi_{+2}) w_{2\mapsto4}^{\mathrm{LO}}(\Phi_2,\Phi_{+2})\right\}$$

 $\Rightarrow\,$ entirely based on MECs and sectorisation

 \Rightarrow by construction, expansion of extended shower matches NNLO singularity structure But shower kernels do not define NNLO subtraction terms¹ (!)

¹This would be required in an "MC@NNLO" scheme, but difficult to realise in antenna showers.

Interleaved single and double branchings

A priori, direct $2 \mapsto 4$ and iterated $2 \mapsto 3$ branchings overlap in ordered region. In sector showers, iterated $2 \mapsto 3$ branchings are always strictly ordered.

Restriction on double-branching phase space enforced by additional veto:

$$\mathrm{d}\Phi_{+2}^{>} = \sum_{j} \theta \left(p_{\perp,+2}^2 - \hat{p}_{\perp,+1}^2 \right) \Theta_{ijk}^{\mathrm{sct}} \, \mathrm{d}\Phi_{+2}$$

Real and double-real corrections

Direct 2 \mapsto 4 shower component fills **unordered region** of phase space $p_{\perp,4}^2 > p_{\perp,3}^2$.

Sectorisation enforces strict cutoff at $p_{\perp,4}^2 = p_{\perp,3}^2$ in iterated 2 \mapsto 3 shower. No recoil effects!

Real-virtual corrections

Real-virtual correction factor ("local K-factor")

$$w_{2\mapsto3}^{\mathrm{NLO}} = w_{2\mapsto3}^{\mathrm{LO}} \left(1 + w_{2\mapsto3}^{\mathrm{V}}\right)$$

studied analytically in detail for $Z \rightarrow q\bar{q}$ in [Hartgring, Laenen, Skands 1303.4974]:

Now: generalisation & (semi-)automation in VINCIA in form of NLO MECs