Fixed-Order Corrections in Sector Showers

Christian T Preuss (ETH Zürich)

CoE Seminar University of Jyväskylä 22/03/2023

Event generation in PYTHIA

Event generation in PYTHIA

VINCIA overview C.T. Preuss, P. Skands, R. Verheyen

- originally developed as plug-in to PYTHIA 8.2
- now part of PYTHIA 8.3 (since October 2019) as one of three showers:
 - simple shower (PartonShowers:model = 1)
 - VINCIA (PartonShowers:model = 2)
 - DIRE (PartonShowers:model = 3)
- full-fledged antenna shower (FF,IF,II,RF)
- exact treatment of mass corrections (phase space and antenna functions)
- full helicity dependence in shower (and MECs)
- dedicated default tuning (similar to PYTHIA's Monash tune)
- Recent and ongoing developments:
 - dedicated RF shower for QCD radiation in top decays [Brooks, Skands 1907.08980]
 - full-fledged interleaved EW shower [Brooks, Skands, Verheyen 2108.10786]
 - fully-differential NNLO QCD matrix element corrections [Campbell, Höche, Li, CTP, Skands 2108.07133]
 - based on sector showers (except EW) [H. Brooks, CTP, P. Skands 2003.00702]

Outline

- 1) Antenna showers on sectorised phase spaces [Brooks, CTP, Skands 2003.00702]
- 2) Efficient (CKKW-L-style) merging with sector showers [Brooks, CTP 2008.09468]
 - (POWHEG also possible but not shown here; see [Höche, Mrenna, Payne, CTP, Skands 2106.10987])
- 3) Towards NNLO+PS matching with sector showers [Campbell, Höche, Li, CTP, Skands 2108.07133]

What is an event generator?

Particle-level event generators aim at simulating high-energy particle collisions in full detail by dividing events into three energy regimes:

Hard regime (multiple) high-energy $2 \rightarrow n$ processes with small n

Soft regime

forming and fragmentation of (visible) hadrons at low energies

Transition regime QCD bremsstrahlung (+ QED/EW emissions)

Sketch by Peter Skands

The "big players": PYTHIA, SHERPA, HERWIG

Parton showers

Parton showers dress a LO calculation with **additional radiation**, describing the evolution from **parton level** (quarks, gluons, ...) to the **particle level** (hadrons).

• evolves event from hard scale Q_0^2 to soft scale Q_{had}^2 but introduces logarithms of the form

$$\alpha_{\mathsf{S}}^{n} \to \alpha_{\mathsf{S}}^{n} \log^{m} \left(\frac{Q_{0}^{2}}{Q^{2}} \right) \,, n \leq 2m \,, \quad \text{large if } Q^{2} \ll Q_{0}^{2}$$

Parton showers vs fixed-order calculations

Fixed-order calculations \rightarrow hard jets

- reliable at high scales if no large scale hierarchies are present
- accurate predictions for limited number of legs (+ loops)
- determines perturbative accuracy (LO, NLO, NNLO, ...)

Showers \rightarrow jet substructure

- reliable in soft/collinear regions if large scale hierarchies are present
- approximate predictions for many particles
- determines logarithmic accuracy (LL, NLL, NNLL, ...)

 \Rightarrow largely complementary, so ideally combine them!

Many ways to skin a cat...

- e.g. SHERPA CSS, HERWIG dipole, DIRE
 - recoil taken by opposite dipole end
 - intrinsically coherent

- e.g. ARIADNE, VINCIA
 - both parents absorb transverse recoil
 - intrinsically coherent

Combining showers and fixed-order calculations

Some disambiguation:

- Matching combine a fixed-order (typically NLO) calculation with a parton shower, avoiding double-counting in overlap regions
 - Merging combine multiple inclusive (N)LO event samples into a single inclusive one with additional shower radiation, accounting for Sudakov suppression and avoiding double-counting in overlap regions (typically via phase-space slicing)

Part I: Sector-Antenna Showers

Sector showers [Brooks, CTP, Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

Idea: combine antenna shower with deterministic jet-clustering algorithm

 let shower only generate emissions that would be clustered by a (3 → 2) jet algorithm (~ ARCLUS [Lönnblad Z.Phys.C 58 (1993)])

⇒ softest gluon always regarded as the emitted one

 \Rightarrow only **one** (most singular) splitting kernel contributes per phase space point

Since Pythia 8.304: full-fledged* implementation of sector showers in VINCIA

Phase space sectors

Branching phase space gets divided into non-overlapping sectors.

• e.g. first emission in $H \rightarrow gg$:

• branchings in the shower are accepted if and only if they correspond to the correct sector

- sectors defined by minimal p_{\perp} in event, but always contain:
 - soft endpoint
 - "full" collinear region for qg
 - "half" of the collinear region for gg with boundary at $z = \frac{1}{2}$

Note: in general, non-trivial sector boundaries away from the singular limits!

Sector antenna functions

Splitting kernels have to incorporate **full** single-unresolved limits for given PS point (KOSOWER subtraction terms [Kosower PRD 57 (1998) 5410, PRD 71 (2005) 045016])

• e.g. (FF) $qg \mapsto qgg (s_{ij} = 2p_i \cdot p_j)$:

$$A_{qg\mapsto qgg}^{\text{sct}}(i_q, j_g, k_g) \rightarrow \begin{cases} \frac{2s_{jk}}{s_{ij}s_{jk}} & \text{if } j_g \text{ soft} \\ \frac{1}{s_{ij}}\frac{1+z^2}{1-z} & \text{if } i_q \parallel j_g \\ \frac{1}{s_{jk}}\frac{2(1-z(1-z))^2}{z(1-z)} & \text{if } j_g \parallel k_g \end{cases}$$

Compare to **global** antenna functions (aka *sub-antenna* functions):

• only "half" of the $j_g \parallel k_g$ limit contained in the splitting kernel:

$$A_{qg\mapsto qgg}^{\mathrm{gl}}(i_q, j_g, k_g) \rightarrow \begin{cases} \frac{2s_{ik}}{s_{ij}s_{jk}} & \text{if } j_g \text{ soft} \\ \frac{1}{s_{ij}}\frac{1+z^2}{1-z} & \text{if } i_q \parallel j_g \\ \frac{1}{s_{jk}}\frac{1+z^3}{1-z} & \text{if } j_g \parallel k_g \end{cases}$$

• "rest" of the *jk*-collinear limit reproduced by neighbouring antenna ($z \leftrightarrow 1-z$)

Sector showers vs global showers

The sector approach is merely an **alternative way** to fraction singularities, so **formal accuracy** of the shower should be **retained**.

Note: same "global shower" tune in VINCIA, no MECs here

Part II: Efficient Merging with Sector Showers

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging: introduce (arbitrary) **merging scale** Q_{MS} and let each calculation populate the phase space where it does best:

Merging with traditional showers: CKKW-L

Basic CKKW-L idea [Catani, Krauss, Kuhn, Webber hep-ph/0109231], [Lönnblad hep-ph/0112284]

- construct all possible shower histories, choose most likely
- let (truncated) trial showers generate Sudakov factors
- re-weight event by Sudakov factors

Number of histories scales factorially with number of legs

Number of Histories for n Branchings							
	n = 1	n=2	n=3	n = 4	n = 5	n = 6	n = 7
CS Dipole	2	8	48	384	3840	46080	645120
Global Antenna	1	2	6	24	120	720	5040

⇒ quickly increasing complexity with multiplicity!

Merging with sector showers (MESS) [Brooks, CTP 2008.09468]

Tree-level merging with sector showers straight-forward:

start from CKKW-L and modify history construction (could be extended to NLO).

- sector showers have a single (!) history for gluon emissions at LC
- to account for gluon splittings $g \mapsto q\bar{q}$, find all viable quark permutations

- for each colour-ordering, shower history again uniquely defined by sectors
- if multiple colour-orderings possible, choose one that maximises branching probability

Since PYTHIA 8.304: sector merging available with VINCIA

Merging with sector showers: validation

Parton-level results for merging in $pp \rightarrow Z$ with up to **9 jets** (using HDF5 event samples from [Höche, Prestel, Schulz 1905.05120])

⇒ smooth transitions, no "sector effects" visible

Merging with sector showers: efficiency

Gauge efficiency gains in $pp \rightarrow Z + 9j$ merging @ parton level (using HDF5 event samples from [Höche, Prestel, Schulz 1905.05120]).

 \Rightarrow \sim **constant** runtime and memory footprint in multi-jet merging

⇒ overall optimisation of the sector shower possible

Merging in DIS: a multi-scale problem [Helenius, Laulainen, CTP WIP]

Factorisation implies that showers start at factorisation scale

$$Q_0^2 \equiv \mu_{\rm F}^2 > Q_1^2 > Q_2^2 > \dots$$

For **DIS**, small photon virtuality $\mu_{\rm F}^2 = Q^2$ severely restricts shower phase space!

Matrix-element domain consists of two disparate regions:

- high- Q^2 , intermediate- $E_{T,B}^2$ events
- low- Q^2 , high- $E_{T,B}^2$ events

Cannot be covered with fixed merging scale.

Solution: dynamic merging scale [Carli, Höche, Gehrmann 0912.3715]

$$Q^2_{\mathsf{MS}} = \bar{Q}^2_{\mathsf{MS}} \left(1 + \frac{\bar{Q}^2_{\mathsf{MS}}}{S^2 \mu_{\mathsf{F}}^2}\right)^{-\frac{1}{2}} \quad \text{with fixed } \bar{Q}^2_{\mathsf{MS}} \text{ and } 0.4 \leq S \leq 0.8$$

(other choices possible)

Part III: Towards NNLO+PS Matching with Sector Showers

NLO+PS matching

POWHEG master formula (for 2 Born partons):

Strategy developed $\gtrsim 20$ years ago [Norrbin, Sjöstrand hep-ph/0010012] nowadays known as POWHEG matching [Nason hep-ph/0409146]

Alternative strategy: MC@NLO [Frixione, Webber hep-ph/0204244] (not discussed here)

$$\langle O \rangle_{\text{NLO}+\text{PS}}^{\text{POWHEG}} = \int d\Phi_2 B(\Phi_2) \underbrace{k_{\text{NLO}}(\Phi_2)}_{\text{local K-factor shower operator}} \underbrace{\mathcal{S}_2(t_0, O)}_{\text{local K-factor shower operator}}$$

where $k_{NLO}(\Phi_2) = 1 + \frac{V(\Phi_2)}{B(\Phi_2)} + \int d\Phi_{+1} \frac{R(\Phi_2, \Phi_{+1})}{B(\Phi_2)}$.

Main trick: matrix-element correction (MEC) in first shower emission

$$\mathcal{S}_{2}(t_{0},O) = \Delta_{2}(t_{0},t_{c})O(\Phi_{2}) + \int_{t_{c}}^{t_{0}} \mathrm{d}\Phi_{+1} \, rac{\mathsf{R}(\Phi_{2},\Phi_{+1})}{\mathsf{B}(\Phi_{2})} \Delta_{2}(t,t_{c})O(\Phi_{3})$$

$$\Delta_{2}(t,t') = \exp\left(-\int_{t'}^{t} d\Phi_{+1}A_{2\mapsto3}(\Phi_{+1})w_{2\mapsto3}^{\mathsf{MEC}}(\Phi_{2},\Phi_{+1})\right), \ w_{2\mapsto3}^{\mathsf{MEC}} = \frac{\mathsf{R}(\Phi_{2},\Phi_{+1})}{A_{2\mapsto3}(\Phi_{+1})\mathsf{B}(\Phi_{2})}$$

Towards NNLO+PS [Campbell, Höche, Li, CTP, Skands 2108.07133]

Idea: "POWHEG at NNLO"

$$\langle O \rangle_{\text{NNLO}+\text{PS}}^{\text{VINCIA}} = \int d\Phi_2 B(\Phi_2) \frac{k_{\text{NNLO}}(\Phi_2)}{\log K - \text{factor shower operator}} S_2(t_0, O)$$

Need:

- (1) Born-local NNLO K-factors (including R, V, RR, RV, VV corrections)
- (2) shower filling ordered and unordered regions of 1- and 2-emission phase space
- (3) tree-level MECs in ordered and unordered shower paths
- (4) NLO MECs in the first emission

Valid for all shower components (FF, IF, II, RF), so far implemented only for FF.

NNLO+PS with sector showers

Key aspect

up to matched order, include process-specific NLO corrections into shower evolution:

(1) correct first branching to exclusive (< t') NLO rate:

$$\Delta^{\mathsf{NLO}}_{2\mapsto3}(t_0,t') = \exp\left\{-\int_{t'}^{t_0} \mathsf{d}\Phi_{+1} \mathsf{A}_{2\mapsto3}(\Phi_{+1}) w^{\mathsf{NLO}}_{2\mapsto3}(\Phi_2,\Phi_{+1})\right\}$$

(2) correct second branching to LO ME:

$$\Delta^{\mathrm{LO}}_{3\mapsto4}(t',t) = \exp\left\{-\int_t^{t'} \mathrm{d}\Phi'_{+1} \, \mathsf{A}_{3\mapsto4}(\Phi'_{+1}) w^{\mathrm{LO}}_{3\mapsto4}(\Phi_3,\Phi'_{+1})\right\}$$

(3) add direct $2 \mapsto 4$ branching and correct it to LO ME:

$$\Delta^{\text{LO}}_{2\mapsto4}(t_0,t) = \exp\left\{-\int_t^{t_0} d\Phi^{>}_{+2} A_{2\mapsto4}(\Phi_{+2}) w^{\text{LO}}_{2\mapsto4}(\Phi_2,\Phi_{+2})\right\}$$

⇒ entirely based on MECs and sectorisation

 \Rightarrow by construction, expansion of extended shower matches NNLO singularity structure But shower kernels do not define NNLO subtraction terms¹ (!)

¹This would be required in an "MC@NNLO" scheme, but difficult to realise in antenna showers.

Interleaved single and double branchings

A priori, direct $2 \mapsto 4$ and iterated $2 \mapsto 3$ branchings overlap in ordered region. In sector showers, iterated $2 \mapsto 3$ branchings are always strictly ordered.

Restriction on double-branching phase space enforced by additional veto:

$$\mathrm{d}\Phi^{>}_{+2} = \sum_{j} heta \left(p^2_{\perp,+2} - \hat{p}^2_{\perp,+1}
ight) \Theta^{\mathrm{sct}}_{ijk} \, \mathrm{d}\Phi_{+2}$$

Real and double-real corrections

Direct 2 \mapsto 4 shower component fills **unordered region** of phase space $p_{\perp,4}^2 > p_{\perp,3}^2$.

Sectorisation enforces strict cutoff at $p_{\perp,4}^2 = p_{\perp,3}^2$ in iterated 2 \mapsto 3 shower. No recoil effects!

Real-virtual corrections

Real-virtual correction factor ("local K-factor")

$$w_{2\mapsto3}^{\mathsf{NLO}} = w_{2\mapsto3}^{\mathsf{LO}} \left(1 + w_{2\mapsto3}^{\mathsf{V}} \right)$$

studied analytically in detail for $Z \rightarrow q\bar{q}$ in [Hartgring, Laenen, Skands 1303.4974]:

Now: generalisation & (semi-)automation in VINCIA in form of NLO MECs

NNLO+PS matching in resonance decays

By construction, partial width is accurate to NNLO.

NNLO accuracy at Born level also implies NLO correction in first emission and LO correction in second emission.

E.g. $H \rightarrow b\bar{b}$ at parton level (vs NLO from [Coloretti, Gehrmann-De Ridder, CTP 2202.07333]):

Conclusions

Sector showers combine shower evolution with jet clustering to become maximally bijective

- "sectorised" VINCIA well validated against "global" VINCIA and PYTHIA (discontinuities? still searching...)
- \bullet sector merging has $\sim\!\!constant$ overall run time and memory usage
- \bullet sector showers default option in VINCIA as of PythiA 8.304

This is just the beginning...

- sector merging easily extendable to NLO (lack of time that it hasn't been done yet...)
- sector decomposition facilitates inclusion of NLO antenna functions in shower evolution (including direct 2 → 4 branchings covering double-unresolved limits)
- antenna-based (N)NLO matching and shower evolution at NLO ongoing developments (currently on a proof-of-concept level for e⁺e⁻ → 2j, but can be extended!)

Backup

Sector definitions

For massless particles, the sector resolution is defined by:

$$Q_{\text{res},j}^2 = \begin{cases} \frac{s_{ij}s_{jk}}{s_{ijk}} & \text{if } j \text{ is a } g\\ s_{ij}\sqrt{\frac{s_{jk}}{s_{ijk}}} & \text{if } (i,j) \text{ is a } q\bar{q} \text{ pair} \end{cases}$$

Sectors defined by:

$$\Theta_{\text{sct},j} = \theta(\min\{Q_{\text{res},j}^2\} - Q_{\text{res},j}^2)$$