

Low x meeting, Ischia 2009





# **Diffraction in PYTHIA**



Sparsh Navin – University of Birmingham

MCnet studentship at University of Lund

Supervisor - Torbjörn Sjöstrand

#### **Outline:**

- Diffraction in PYTHIA old description
- PYTHIA vs PHOJET
- Diffraction in PYTHIA new description and distributions
- Outlook

## **Process Types**



## Diffraction in PYTHIA – "old"

### **Event Generation:**

• Diffractive cross sections given by model by Schuler and Sjöstrand (Phys. Rev. D 49, 2257 (1994))

• Diffractive mass (  $M_{\chi}$  ) and momentum transfer (t) generated according to:

$$\frac{d^2s}{dt dM_X^{2}} \sim \frac{1}{M_X^{2}} e^{-b|t|}$$

### **Particle Production:**

- $M_X < 1 \ GeVc^{-2}$  above mass of incoming particles => isotropical decay into 2-body state
- More massive system treated as a string with quantum numbers of the original hadron

### Diffraction in "old" PYTHIA – stretching the string



Pomeron couples to gluon Dominates at large  $M_X$  Pomeron couples to valence quarks Dominates at small  $M_X$ 

Version 6.214 (Fortran)

 q and g contributions are set by a user-defined fixed ratio Version 8.1 (C++)

$$\frac{\mathbf{P}(q)}{\mathbf{P}(g)} = \frac{N}{M_X^p}$$

• Slopes (value of p) in q and g case are different

• mass (
$$M_X$$
) dependence 4

### PYTHIA "old" vs PHOJET - $p_T$



## PYTHIA "old" vs PHOJET - N<sub>ch</sub>



# Diffraction in PYTHIA – "new"

### **Event Generation:**

- Cross sections same way as before
- Diffractive mass (  $M_X$ ) and momentum transfer (t) picked by Pomeron flux model

### **Particle Production:**

- Pomeron-p collisions
- Pomeron PDF with  $Q^2$  dependence from H1 data
  - H1 2007 DPDF Fit Jets and H1 2006 Fits A and B
  - Pion PDF also available
- Standard PYTHIA machinery for multiple interactions, parton showers, hadronization

#### Mass separation:

- For 1.2 GeV < M<sub>X</sub> < 10 GeV non-perturbative description (as before)</li>
  longitudinally stretched strings
- For  $M_X > 10 \ GeV$  perturbative

## **Pomeron Flux factor**

• Energy dependent



## PYTHIA "old" vs "new" - pT



### PYTHIA "old" vs "new" - Nch

![](_page_9_Figure_1.jpeg)

## Comments

![](_page_10_Figure_1.jpeg)

In the massless limit

![](_page_10_Figure_3.jpeg)

 $M_X^2 \approx x_P s$ 

Diffractive hard scattering cross section:

 $\frac{d\sigma}{dQ^2} \propto \underbrace{f_{P/proton}(x_P)}_{\text{Pomeron flux}} \underbrace{f_{q(g)/P}(x_{q(g)}, Q^2)}_{\text{Pomeron PDF}} \frac{d\hat{\sigma}}{dQ^2}$ 

Not known from first principles

Multiple interactions => screening of diffractive rates

# **Future Plans**

![](_page_11_Figure_1.jpeg)

- Does  $p_{T0}$  cut-off depend on the diffractive mass?
- Introduce a screening factor to go from ep to pp collisions
- Momentum sum of PDFs

•

# Summary

- Earlier versions of PYTHIA had a primitive description of diffraction
- No hard diffraction caused the difference in pT and multiplicity tails compared to PHOJET
- New version has Pomeron description of diffraction
- Hard collisions can be simulated
- Better agreement with PHOJET

# **Back up slides**

- Trigger efficiencies ALICE
- SD, DD, ND events in ALICE detectors
- Diffraction in Phojet
- Extraction of fractions from data ALICE

# **Trigger Efficiencies and corrections**

Efficiency = 
$$N_{triggered} / N_{total} = \sum f_{process} e_{process}$$
  
=  $f_{SD} e_{SD} + f_{DD} e_{DD} + f_{ND} e_{ND}$ 

- Need to know the fraction (f) and the efficiency (e) for each process.
- Efficiency is process, trigger and generator dependent

#### MB1 = SPD or V0A or V0C

|                         |                      | iencies:             | MB1 effic            |                                           |
|-------------------------|----------------------|----------------------|----------------------|-------------------------------------------|
| ND                      | ND                   | DD                   | SD                   | Process                                   |
| .686 Pythia: 92.9       | 0.686                | 0.127                | 0.187                | Fraction (f)                              |
| .999                    | 0.999                | 0.864                | 0.714                | Efficiency (e)                            |
|                         |                      |                      |                      |                                           |
|                         |                      |                      |                      |                                           |
| ND                      | ND                   | DD                   | SD                   | Process                                   |
| ND<br>.803 Phojet: 96.4 | ND<br>0.803          | DD<br>0.063          | SD<br>0.134          | Process<br>Fraction (f)                   |
| ND<br>.803<br>.999      | ND<br>0.803<br>0.999 | DD<br>0.063<br>0.938 | SD<br>0.134<br>0.767 | Process<br>Fraction (f)<br>Efficiency (e) |

# Single Diffraction (SD) in ALICE

![](_page_15_Figure_1.jpeg)

## **Double Diffraction (DD) in ALICE**

![](_page_16_Figure_1.jpeg)

Pseudorapidity gap

# Non Diffractive (ND) events

![](_page_17_Figure_1.jpeg)

No pseudorapidity gap

# **Central elements of Phojet**

- R. Engel workshop on soft diffraction at LHC 26/6/09

### **Two component Pomeron**

Only one pomeron with soft and hard contributions Topological identification of different terms (Dual parton model) Soft and hard partons differ in impact parameter distribution Application of existing parton density parametrisation Initial and final state radiation (leading logQ^2 parton showers)

## **Extraction of fractions**

- Z.Matthews 20/03/09, ALICE first physics meeting

- Trigger on bunch crossing
- Define 8 uncorrelated trigger types using SPD, V0A and V0C
- Meausre  $N_{trig}$

- Program works out combinations of fractions to generate  $\,N_{\rm trig-calc}\,$  so as to minimise  $\chi^2$