Photo-nuclear collisions in PYTHIA 8

UPC 2023: INTERNATIONAL WORKSHOP ON THE PHYSICS OF ULTRA PERIPHERAL COLLISIONS

Motivation: data for inclusive γ -p and γ -Pb from UPCs at the LHC

• Multiplicity distribution well in line for γ -p but γ -p not enough for γ -Pb

Motivation: data for inclusive $\gamma\text{-}\mathrm{p}$ and $\gamma\text{-}\mathrm{Pb}$ from UPCs at the LHC

- Multiplicity distribution well in line for γ -p but γ -p not enough for γ -Pb
- · CMS γ -p v_2 reproduced with Pythia, ATLAS data show finite v_2 and v_3 in γ -Pb

Outline

PYTHIA 8: A general purpose event generator

- Latest release 8.310 (July 2023)
- A new physics manual for 8.3

[SciPost Phys. Codebases 8-r8.3 (2022)]

Outline

- 1. Pythia 8 basics
- 2. Photoproduction in e+p at HERA
- 3. UPCs at the LHC
 - Photon fluxes in Pythia
 - Photon-ion collisions
 - v₂ extraction
- 4. Summary & Outlook

[figure by P. Skands]

Physics modelled within Рүтніа 8

Classify event generation in terms of "hardness"

1. Hard Process (here $t\bar{t}$)

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)

- 1. Hard Process (here $t\bar{t}$)
- 2. Resonance decays (t, Z, \ldots)
- Matching, Merging and matrix-element corrections

- 1. Hard Process (here $t\bar{t}$)
- 2. Resonance decays (t, Z, \ldots)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions

- 1. Hard Process (here $t\bar{t}$)
- 2. Resonance decays (t, Z, \ldots)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers:
 - ISR, FSR, QED, Weak

- 1. Hard Process (here $t\bar{t}$)
- 2. Resonance decays (t, Z, \ldots)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers: ISR. FSR. OED. Weak
- 6. Hadronization, Beam remnants

- 1. Hard Process (here $t\bar{t}$)
- 2. Resonance decays (t, Z, \ldots)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers: ISR. FSR. OED. Weak
- 6. Hadronization, Beam remnants
- 7. Decays, Rescattering

Photoproduction in HERA

Electron-proton collisions and connection to UPCs

Classified in terms photon virtuality Q^2

Deep inelastic scattering (DIS)

- High virtuality, $Q^2 > a$ few GeV²
- Lepton scatters off a parton by exchanging a highly virtual photon

Photoproduction (PhP)

- Low virtuality, $Q^2
 ightarrow 0~{
 m GeV^2}$
 - \Rightarrow Similar to UPCs
- Photon may fluctuate into a hadronic state, resolved in the interaction
- Hard scale μ provided by the final state

Photon structure at $Q^2 \approx 0 \text{ GeV}^2$

Partonic structure of resolved (anom. + VMD) photon encoded in photon PDFs

$$f_i^{\gamma}(\mathbf{x}_{\gamma}, \mu^2) = f_i^{\gamma, \text{dir}}(\mathbf{x}_{\gamma}, \mu^2) + f_i^{\gamma, \text{anom}}(\mathbf{x}_{\gamma}, \mu^2) + f_i^{\gamma, \text{VMD}}(\mathbf{x}_{\gamma}, \mu^2)$$

•
$$f_i^{\gamma,\text{dir}}(x_\gamma,\mu^2) = \delta_{i\gamma}\delta(1-x_\gamma)$$

- $f_i^{\gamma,\text{anom}}(x_{\gamma},\mu^2)$: Perturbatively calculable
- $f_i^{\gamma,\text{VMD}}(x_{\gamma},\mu^2)$: Non-perturbative, fitted or vector-meson dominance (VMD)

Factorized cross section

$$\mathrm{d}\sigma^{\mathrm{b}\mathrm{p}\to\mathrm{k}l+X} = f^{\mathrm{b}}_{\gamma}(\mathrm{x})\otimes f^{\gamma}_{j}(\mathrm{x}_{\gamma},\mu^{2})\otimes f^{\mathrm{p}}_{i}(\mathrm{x}_{\mathrm{p}},\mu^{2})\otimes \mathrm{d}\sigma^{ij\to\mathrm{k}l}$$

ISR probability based on DGLAP evolution

· Add a term corresponding to $\gamma \rightarrow q\overline{q}$ to (conditional) ISR probability

$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\rm s}}{2\pi} \frac{x' f_a^{\gamma}(x',Q^2)}{x f_b^{\gamma}(x,Q^2)} P_{a\rightarrow bc}(z) \,\mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\rm em}}{2\pi} \frac{e_b^2 P_{\gamma\rightarrow bc}(x)}{f_b^{\gamma}(x,Q^2)}$$

- \cdot Corresponds to ending up to the beam photon during evolution
 - \Rightarrow Parton originated from the point-like (anomalous) part of the PDFs
 - No further ISR or MPIs below the scale of the splitting
 - Implemented only for Simple Shower in PYTHIA

Comparison to HERA dijet photoproduction data

ZEUS dijet measurement

- $Q^2 < 1.0 \text{ GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- + $E_{\rm T}^{\rm jet1}$ > 14 GeV, $E_{\rm T}^{\rm jet2}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

- Momentum fraction of partons in photon $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}}e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}}e^{\eta^{\text{jet2}}}}{2yE_{\text{e}}} \approx x_{\gamma}$
- Sensitivity to process type

Comparison to HERA dijet photoproduction data

ZEUS dijet measurement

- $Q^2 < 1.0 \text{ GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- + $E_{\mathrm{T}}^{\mathrm{jet1}}$ > 14 GeV, $E_{\mathrm{T}}^{\mathrm{jet2}}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

- Momentum fraction of partons in photon $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}}e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}}e^{\eta^{\text{jet2}}}}{2yE_{\text{e}}} \approx x_{\gamma}$
- Sensitivity to process type
- At high- $x_{\gamma}^{\rm obs}$ direct processes dominate

Comparison to ZEUS data for charged hadrons ($N_{ch} > 20$)

Pseudorapidity

- Data well reproduced
- Not sensitive to MPI modelling $(p_{T,0})$

Comparison to ZEUS data for charged hadrons ($N_{ch} > 20$)

Pseudorapidity

- Data well reproduced
- Not sensitive to MPI modelling $(p_{T,0})$

Multiplicity

- Sensitivity to MPI parameters, clear support for MPIs
- Data within $p_{T,0}$ variations
- Good baseline to study γ +A in UPCs

Comparison to ZEUS data for charged hadrons ($N_{ch} > 20$)

Pseudorapidity

- Data well reproduced
- Not sensitive to MPI modelling $(p_{T,0})$

Multiplicity

- Sensitivity to MPI parameters, clear support for MPIs
- Data within $p_{T,0}$ variations
- Good baseline to study γ +A in UPCs
- Direct contribution negligible in high-multiplicity events (N_{ch} > 20)
 ⇒ Focus on resolved processes

Photon fluxes in Pythia 8

Photon fluxes from Equivalent Photon Approximation (EPA)

• In case of a point-like lepton we have (neglecting electron mass)

$$f_{\gamma}^{l}(x,Q^{2}) = rac{lpha_{em}}{2\pi} rac{1}{Q^{2}} rac{(1+(1-x)^{2})}{x}$$

• For protons need to include form factors, using dipole form factor

$$f_{\gamma}^{p}(x,Q^{2}) = \frac{\alpha_{\text{em}}}{2\pi} \frac{x}{Q^{2}} \frac{1}{(1+Q^{2}/Q_{0}^{2})^{4}} \left[\frac{2(1+\mu_{\text{p}}\tau)}{1+\tau} \left(\frac{1-x}{x^{2}} - \frac{M_{\text{p}}^{2}}{Q^{2}} \right) + \mu_{\text{p}}^{2} \right]$$

where $\tau = Q^2/4M_p^2$, $\mu_p = 2.79$, $Q_0^2 = 0.71 \text{ GeV}^2$

• Drees-Zeppenfeld approximation ($M_p = 0, \mu_p = 1$)

$$f_{\gamma}^{p}(x,Q^{2}) = \frac{\alpha_{em}}{2\pi} \frac{1}{Q^{2}} \frac{1}{(1+Q^{2}/Q_{0}^{2})^{4}} \frac{(1+(1-x)^{2})}{x}$$

- \Rightarrow Large Q^2 suppressed wrt. leptons \Rightarrow photoproduction
 - In ME generators (such as MG5) integrated over Q² and assumed collinear

Define your own photon flux for PYTHIA 8

• Derive a new object from PDF class

class Proton2gammaEPA : public PDF { public: // Constructor. Proton2gammaEPA(int idBeamIn) : PDF(idBeamIn) {} // Update the photon flux. void xfUpdate(int , double x, double Q2) { double mup2 = pow2(20.938); double mup2 = pow2(20.938); double mup2 = pow2(20.938); double fQ4 = 1. / pow4(1 + Q2 / Q20); double fQ4 = 1. / pow4(1 + Q2 / Q20); double tou = Q2 / (4. * m2proton); xgamma = coupling * (pow2(x) / Q2) * (2. * (1. + mup2*tau) / (1. + tau) * ((1 - x)/pow2(x) - m2proton / Q2) + mup2); };

• Pass as a pointer to PYTHIA

pythia.readString("PDF:beamA2gamma = on"); pythia.readString("PDF:beamB2gamma = on"); pythia.readString("PDF:proton2gammaSet = 0"); PDFPtr photonFluxA = make_shared<Proton2gammaEPA>(2212); PDFPtr photonFluxB = make_shared<Proton2gammaEPA>(2212); pythia.setPhotonFluxPtr(photonFluxA, photonFluxB);

Example in p-p: $\gamma \gamma \rightarrow \mu^+ \mu^-$

No finite-size effects
 accounted

Ultraperipheral heavy-ion collisions

- Large impact parameter $(b \gtrsim 2R_A)$ \Rightarrow No strong interactions
- Large flux due to large EM charge of nuclei
- $\Rightarrow \gamma \gamma$ and γA collisions

• With heavy nuclei use *b*-integrated point-like-charge flux

$$f_{\gamma}^{A}(x) = \frac{2\alpha_{\rm EM}Z^{2}}{x\pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right]$$

where $\xi = b_{\min} x m$ where b_{\min} reject nuclear overlap, $Q^2 \ll 1 \text{ GeV}^2$

Ultraperipheral heavy-ion collisions

- Large impact parameter ($b \gtrsim 2R_A$) \Rightarrow No strong interactions
- Large flux due to large EM charge of nuclei
- $\Rightarrow \gamma \gamma$ and γA collisions

• With heavy nuclei use *b*-integrated point-like-charge flux

$$f_{\gamma}^{A}(x) = \frac{2\alpha_{\rm EM}Z^{2}}{x\pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right]$$

where $\xi = b_{\min} x m$ where b_{\min} reject nuclear overlap, $Q^2 \ll 1 \text{ GeV}^2$

Dijets in ultra-peripheral heavy-ion collisions

- Pythia setup with nucleon target only
 ⇒ Not a realistic background for jet reconstruction
- Good agreement out of the box when accounting both direct and resolved
- Also EM nuclear break-up significant

12

Photon-ion collisions

Modelling $\gamma\text{-}A$ with Pythia

[by Marius Utheim]

Aim to simulate high-multiplicity events

- Dominated by resolved photons
- ⇒ Set up an explicit VMD model with linear combination of vector-meson states (ρ , ω , ϕ and J/ψ)
 - Use VM PDFs from SU21

[Sjöstrand, Utheim; Eur.Phys.J.C 82 (2022) 1, 21]

• Cross sections from SaS

[Schuler, Sjöstrand; Phys.Rev.D 49 (1994) 2257-2267]

- Sample collision energy from flux
- ⇒ VMD-nucleon scatterings

Modelling $\gamma\text{-}A$ with Pythia

[by Marius Utheim]

Aim to simulate high-multiplicity events

- Dominated by resolved photons
- ⇒ Set up an explicit VMD model with linear combination of vector-meson states (ρ , ω , ϕ and J/ψ)
 - Use VM PDFs from SU21

[Sjöstrand, Utheim; Eur.Phys.J.C 82 (2022) 1, 21]

Cross sections from SaS

[Schuler, Sjöstrand; Phys.Rev.D 49 (1994) 2257-2267]

- Sample collision energy from flux
- \Rightarrow VMD-nucleon scatterings
 - In line with the full photoproduction

Modelling $\gamma\text{-}A$ with Pythia

[by Marius Utheim]

Angantyr model for heavy ions in Pythia

[Bierlich, Gustafson, Lönnblad, Shah; JHEP 10 (2018) 134]

- Monte Carlo Glauber to sample nucleon configurations
- Cross section fluctuations, fitted to
 partial nucleon-nucleon cross sections
- Secondary (wounded) collisions as diffractive excitations
- Can now handle generic hadron-ion and varying energy [I.H., Utheim; in progress]
- ⇒ VMD-nucleus scatterings

- ATLAS data not corrected for efficiency, estimated with $N_{ch}^{rec} \approx 0.8 \cdot N_{ch}$
- Relative increase in multiplicity well in line with the VMD-Pb setup

- Multiplicity cut adjusted according to the limited efficiency
- Good description of the measured rapidity distribution with the VMD-Pb setup

Two-particle correlations in ATLAS analysis

- ATLAS apply template-fitting method to extract v_n from two-particle correlations
 - Perform a Fourier fit to obtain c_n's for low-multiplicity events (nonflow?)

$$Y^{LM}(\Delta\phi) = c_0 + 2 \cdot \sum_{n=1}^{4} c_n \cos(n\Delta\phi)$$

• Fit high multiplicity $v_{n,n}$'s on top

$$Y^{\text{HM}}(\Delta\phi) = F \cdot Y^{\text{LM}}(\Delta\phi) + G\left[1 + 2 \cdot \sum_{n=2}^{4} v_{n,n} \cos(n\Delta\phi)\right]$$

Free parameters c_n , $v_{n,n}$, F, G

• Can now repeat the fit with Pythia results

Template fit to Pythia simulations

Comparison to ATLAS v_n data

- Simulated results in line with the direct Fourier fit for v_{2,2}
- · Consistent with zero after template fitting (non-flow subraction)
- String interactions in high-multiplicity hadronization, hadronic rescattering?

Summary & Outlook

Summary

- In e+p validated setup for photoproduction at HERA
- Includes fluxes relevant for proton and heavy-ion UPCs
- First steps for full γ +A (8.311)
- \Rightarrow In line with multiplicity distributions
- \Rightarrow As such not consistent with finite v₂

Outlook

- Include full photon structure
- Study different string-interaction effects for high-multiplicity events

[figure by P. Skands]

Backup slides

Рүтны Collaboration

- Christian Bierlich
- Naomi Cooke
- Nishita Desai
- Leif Gellersen
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Christian Preuss
- Torbjörn Sjöstrand
- Peter Skands
- Marius Utheim (University of Jyväskylä
- Rob Verheyen (University College London)

(Lund University) (University of Glasgow) (TIFR. Mumbai) (Lund University) (University of Jyväskylä) (University of Cincinnati) (Lund University) (Fermilab) (ETH Zurich) (Lund University) (Monash University) (University of Jyväskylä)

[Pythia meeting in Monash 2019]

Рутні Collaboration

- Christian Bierlich
- Naomi Cooke
- Nishita Desai
- Leif Gellersen
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Christian Preuss
- Torbiörn Siöstrand
- Peter Skands
- (University of Jyväskylä) Marius Utheim
- Rob Verheven (University College London)

(Lund University) (University of Glasgow) (TIFR. Mumbai) (Lund University) (University of Jyväskylä) (University of Cincinnati) (Lund University) (Fermilab) (ETH Zurich) (Lund University) (Monash University)

[Pythia meeting in Monash 2019]

- Spokesperson
- Codemaster
- Webmaster

https://pythia.org authors@pythia.org

DGLAP equation for photons

- Additional term due to $\gamma
ightarrow {
m q} \overline{
m q}$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\text{em}}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_{\text{s}}(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1 - x)^2)$ for quarks, 0 for gluons (LO)

• Resulting PDFs has point-like (or anomalous) and hadron-like components

$$f_i^{\gamma}(x,Q^2) = f_i^{\gamma,\mathsf{pl}}(x,Q^2) + f_i^{\gamma,\mathsf{had}}(x,Q^2)$$

• $f_i^{\gamma, \text{pl}}$: Calculable from perturbative QCD

• $f_i^{\gamma,had}$: Requires non-perturbative input fixed in a global analysis

Photon structure at $Q^2 \sim 0 \text{ GeV}^2$

Linear combination of three components

$$|\gamma\rangle = c_{\rm dir}|\gamma_{\rm dir}\rangle + \sum_{q} c_{q}|q\overline{q}\rangle + \sum_{V} c_{V}|V\rangle$$

where the last term includes a linear combination of vector meson states up to J/ Ψ

$$c_V = \frac{4\pi\alpha_{\rm EM}}{f_V^2}$$

V	$f_V^2/(4\pi)$
$ ho^0$	2.20
ω	23.6
ϕ	18.4
J/Ψ	11.5

Equivalent photon approximation

Compare to full calculation

- Example process $pp \to \gamma\gamma \to \mu^+\mu^-$
- Different approximations (e.g.) by Drees and Zeppenfeld \sim 20% difference to full calculation
- Keeping finite mass and correct magnetic moment provides \sim few percent accuracy
- Not checked for other observables, such as acoplanarity

• Enable γ +p in e+p

pythia.readString("Beams:idA = -11"); pythia.readString("Beams:idB = 2212"); pythia.readString("PDF:beamA2gamma = on");

• Enable γ +p in e+p

pythia.readString("Beams:idA = -11");
pythia.readString("Beams:idB = 2212");
pythia.readString("PDF:beamA2gamma = on");

• Enable γ +p in p+p

pythia.readString("Beams:idA = 2212");
pythia.readString("Beams:idB = 2212");
pythia.readString("PDF:beamA2gamma = on");

• Enable γ +p in e+p

pythia.readString("Beams:idA = -11");
pythia.readString("Beams:idB = 2212");
pythia.readString("PDF:beamA2gamma = on");

• Enable γ +p in p+p

pythia.readString("Beams:idA = 2212");
pythia.readString("Beams:idB = 2212");
pythia.readString("PDF:beamA2gamma = on");

• Enable γ +p in Pb+p

pythia.readString("Beams:idA = 2212"); pythia.readString("PDF:beamA2gamma = on"); pythia.readString("PDF:beamA2gammaSet = 0"); pythia.readString("PDF:beam2gammaApprox = 2"); pythia.readString("Photon:sample02 = off"); PDFPtr photonFlux = make_shared<Nucleus2gamma>(2212); pythia.setPhotonFluxPtr(photonFlux, 0);

For more examples see main68.cc, main69.cc, main70.cc, main78.cc in examples directory

class Nucleus2gamma2 : public PDF { public: Nucleus2aamma2(int idBeamIn) : PDF(idBeamIn) {} void xfUpdate(int , double x, double) { double bmin = 2 * 6.636: double z = 82.: double $m^2 = pow^2(0.9314)$: double alphaEM = 0.007297353080; double hbarc = 0.197: double xi = x * sart(m2) * bmin / hbarc:double bK0 = besselK0(xi); double bK1 = besselK1(xi): double intB = xi * bK1 * bK0 - 0.5 * pow2(xi) * (pow2(bK1) - pow2(bK0)) xaamma = 2. * alphaEM * pow2(z) / M PI * intB:

[from main70.cc]

An example process: $\gamma\gamma \to \mu^+\mu^-$

- Can take place in EE, SD and DD (also DY processes with resolved photons?)
- Implemented natively in Pythia, can also generate with an ME generator (MG5, SC)

EE contribution

- Clean process to study fluxes
- However, fluxes only does not account for finite-size effects

[ATLAS: PLB 777 (2018) 303-323]

An example process: $\gamma\gamma \to \mu^+\mu^-$

- Can take place in EE, SD and DD (also DY processes with resolved photons?)
- Implemented natively in Pythia, can also generate with an ME generator (MG5, SC)

EE contribution

- Clean process to study fluxes
- However, fluxes only does not account for finite-size effects
- Not quite back-to-back due to
 - p_T generated by non-collinear photons
 - QED radiation in the final state
- Acoplanarity $|\pi-\Delta\phi|$ quantify the effect

- Needed to tune Pythia primordial k_T parameters for external events
- Can use (user-defined) flux for Q² sampling

Heavy-ion collisions

• Angantyr in Pythia provides a full heavy-ion collisions framework

[Bierlich, Gustafson, Lönnblad & Shah: 1806.10820]

· Hadronic rescattering can be included as well, enhances collective effects

[CB, Ferreres-Solé, Sjöstrand & Utheim: 1808.04619, 2005.05658, 2103.09665]

p+A collisions

[Bierlich, Gustafson, Lönnblad & Shah: 1806.10820]

- Angantyr can be applied also to asymmetric p+A collisions
- The centrality measure well reproduced
- · Similarly centraility-dependent multiplicities

ATLAS data for v_n in γ +Pb

- Non-zero flow coefficients also for γ +Pb
- Expected baseline from MC simulations?

- Pythia8 γ +p in ATLAS result should correspond to gm-p on right
- Relative increase in multiplicity well in line with the VMD setup

- Pythia8 γ +p in ATLAS result should correspond to gm-p on right
- Relative increase in multiplicity well in line with the VMD setup

- Pythia8 γ +p in ATLAS result should correspond to gm-p on right
- Relative shift in rapidity distribution in line with the VMD setup using Angantyr

- Pythia8 γ +p in ATLAS result should correspond to gm-p on right
- Relative shift in rapidity distribution in line with the VMD setup using Angantyr

- $\Sigma_{\gamma} \Delta \eta$: Sum of rapidity gaps for which $\Delta \eta > 0.5$
- Similar for γ -p and γ -Pb

Role of cross section fluctuations

 High-multiplicity tail less pronounced with Angantyr:CollisionModel = 0 with fixed nucleon radius, ATLAS data seem to favour fluctuations

Energy distributions vs. multiplicity

