Photoproduction and ultra-peripheral collisions with Pythia 8

Poetic 8

Ilkka Helenius

March 20th, 2018

Tübingen University Insititute for Theoretical Physics

In collaboration with Torbjörn Sjöstrand

Motivation & Outline

Why study photoproduction?

- Monte-Carlo event generators essential to study the potential of future experiments
- Photo-nuclear processes can be used to probe the structure of nucleons (nuclear PDFs)
- ⇒ Connection between EIC and ultra-peripheral heavy ion collisions at the LHC

Outline

- 1. Photoproduction in PYTHIA 8
- 2. Comparisons to HERA data
- 3. Ultraperipheral heavy-ion collisions
- 4. Summary & Outlook

Photoproduction in Pythia 8

Ρύτηια 8

- A general-purpose Monte-Carlo event generator
- Current version 8.230, next release within a few weeks
- Main focus has been in pp, now extensions to ee, ep, pA, AA

Team:

- Torbjörn Sjöstrand
- Christian Bierlich
- Nishita Desai
- Nadine Fischer
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Stefan Prestel
- Christine O. Rasmussen
- Peter Skands

Lund University Lund University CNRS-Universite de Montpellier Monash University Tübingen University University of Birmingham Lund University Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Lund University Monash University

Event generation in Pythia 8

1. Hard process generation

- Generate according to LO partonic cross section and PDFs (or feed in processes from external matrix element generator)
- 2. Parton showers
 - Generate Initial and Final State Radiation (ISR & FSR) according to DGLAP evolution equations
- 3. Multiparton interactions (MPIs)
 - Use regularized QCD 2 ightarrow 2 cross sections finite also at $p_T
 ightarrow$ 0
- 4. Add beam remnants
 - Minimal number of partons to conserve colour and flavour
 - Fix momenta so that total momentum is conserved
- 5. Hadronization
 - Using Lund string model with color reconnection
 - Decays into stable hadrons

Photoproduction in ep

Photoproduction: Small photon virtuality $Q_{\gamma}^2 \lesssim 1 \text{ GeV}^2$ (cf. DIS)

• Factorize the flux of photons from the hard scattering (Weizsäcker-Williams)

$$f_{\gamma}^{l}(x_{\gamma}) = \frac{\alpha_{\text{em}}}{2\pi} \frac{(1 + (1 - x_{\gamma})^{2})}{x_{\gamma}} \log \left[\frac{Q_{\text{max}}^{2}}{Q_{\text{min}}^{2}(x_{\gamma})}\right]$$

- Direct processes
 - Photon initiator of the hard process
 - No MPIs but FSR and ISR for hadron
- Resolved processes
 - Photon fluctuates into a hadronic state
 - Partonic structure described with PDFs
 - FSR and ISR for both sides, also MPIs

PDFs for resolved photons

Obtained through global DGLAP analysis (LEP data mainly)

- Some differences between analyses, especially for gluon
 ⇒ Theoretical uncertainty for resolved processes
- CJKL used as a default in PYTHIA 8, others via LHAPDF5 but only for hard-process generation

MPIs in Pythia 8

- + Probability for MPIs from 2 \rightarrow 2 QCD processes
- Partonic cross section diverges at p_T → 0
 ⇒ Regulate the divergence with screening parameter p_{T0}

$$\frac{\mathrm{d}\sigma^{2\to2}}{\mathrm{d}p_{\mathrm{T}}^2} \propto \frac{\alpha_{\mathrm{s}}(p_{\mathrm{T}}^2)}{p_{\mathrm{T}}^4} \rightarrow \frac{\alpha_{\mathrm{s}}(p_{\mathrm{T0}}^2 + p_{\mathrm{T}}^2)}{(p_{\mathrm{T0}}^2 + p_{\mathrm{T}}^2)^2}$$

- pp: Power-law in \sqrt{s} $p_{T0}(\sqrt{s}) = p_{T0}^{ref}(\sqrt{s}/7 \text{ TeV})^{\alpha}$ $p_{T0}^{ref} = 2.28 \text{ GeV/c}, \alpha = 0.215$ (Monash tune)
- $\gamma\gamma$: Logarithmic in \sqrt{s} $p_{T0}(\sqrt{s}) = p_{T0}^{ref} + \alpha \log (\sqrt{s}/100 \text{ GeV})$ $p_{T0}^{ref} = 1.52 \text{ GeV/c}, \alpha = 0.413$ (I.H., T. Sjöstrand, in prep.)
- Parametrization for γ p?

Comparisons to HERA data

Charged particle p_T spectra in ep collisions at HERA

[H1: Eur.Phys.J. C10 (1999) 363-372]

H1 measurement

- \cdot E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < W $_{\gamma p}$ > $\,pprox$ 200 GeV
- $Q_{\gamma}^2 < 0.01 \, {\rm GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- $\Rightarrow\,$ MPI probability between pp and $\gamma\gamma$

Charged particle p_T spectra in ep collisions at HERA

H1 measurement

- \cdot E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < W $_{\gamma p}$ > $\,pprox$ 200 GeV
- $Q_{\gamma}^2 < 0.01 \, {\rm GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution
 dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- $\Rightarrow\,$ MPI probability between pp and $\gamma\gamma$

Charged particle p_T spectra in ep collisions at HERA

H1 measurement

- \cdot E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < W $_{\gamma p}$ > $\,pprox$ 200 GeV
- $Q_{\gamma}^2 < 0.01 \, {\rm GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Dijet photoproduction in ep collisions at HERA

ZEUS dijet measurement

- $Q_\gamma^2 < 1.0 ~{\rm GeV^2}$
- 134 $< W_{\gamma p} <$ 277 GeV
- $E_{\rm T}^{\rm jet1}$ > 14 GeV, $E_{\rm T}^{\rm jet2}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Different contributions

• Define

$$x_{\gamma}^{\rm obs} = \frac{E_{\rm T}^{\rm jet1} e^{\eta^{\rm jet1}} + E_{\rm T}^{\rm jet2} e^{\eta^{\rm jet2}}}{2yE_{\rm e}}$$

to discriminate direct and resolved processes (=x in γ at LO parton level)

- At high- $x_{\gamma}^{\mathrm{obs}}$ direct processes dominate

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets [Eur.Phys.J. C23 (2002) 615-631]

- \cdot Simulations tend to overshoot the dijet data by \sim 10 %
- $\cdot \sim$ 10 % uncertainty from photon PDFs for $x_{\gamma}^{\rm obs} < 0.75$

Ultraperipheral heavy-ion collisions

Motivation: Nuclear parton distribution functions (nPDFs)

- ⇒ Large uncertainties especially for gluon nPDFs
- ⇒ Uncertainty in the pQCD baseline for heavy-ion physics at the LHC

Data available for nPDF fits

- Fixed-target (ν)DIS and DY
- Pions in dAu at RHIC
- Dijets in pPb at the LHC
- EW bosons at the LHC
- \Rightarrow Limited kinematic reach

[Figures from EPPS16: Eur.Phys.J. C77 (2017) no.3, 163] 10

Ultra-peripheral heavy-ion collisions

- Large impact parameter $b \Rightarrow$ No strong interaction
- EM-field of nuclei described with quasi-real photons (EPA)
- \Rightarrow Flux of photons with low virtuality (= Photoproduction)
 - Photon-photon (dileptons, light-by-light)
 ⇒ Useful to calibrate the photon flux
 - Photon-nucleus (dijets, incl. hadrons, heavy flavours, ...)
 ⇒ Can be used to probe nuclear PDFs
 Proposed by M. Strikman, R. Vogt and S. White [PRL 96 (2006) 082001]

11

Photon-photon interactions

Photon flux from nuclei in impact-parameter b space

• Obtained by a Fourier transformation of the time-dependent EM-field

$$x_{\gamma}f_{\gamma}^{A}(x_{\gamma},b) = \frac{\alpha_{\rm EM}Z^{2}}{\pi^{2}} \left[\frac{x_{\gamma}m}{\hbar c}K_{1}\left(\frac{x_{\gamma}bm}{\hbar c}\right)\right]^{2}$$

where Z is nuclear charge, m (per-nucleon) mass and K₁ modified Bessel function [Jackson, Classical Electrodyn., 2nd ed.]

Effective photon-photon luminosity

- Need to reject events with hadronic interactions
 - Reject events based on hard-sphere approximation
 ⇒ Possible to set up in PYTHIA 8
 - Use hadronic interaction probabilities based on nuclear overlap, e.g. STARLIGHT [Comput.Phys.Commun. 212 (2017) 258-268]

High-mass dimuons in ultraperipheral Pb+Pb at the LHC

$\mathrm{Pb}\mathrm{+Pb} \rightarrow \mu^{+}\mathrm{+}\mu^{-}\mathrm{+Pb}^{*}\mathrm{+Pb}^{*}$

- Data well described by STARLIGHT MC
- ⇒ Confirms EPA for Pb+Pb at the LHC

- PYTHIA hard-sphere flux agrees with STARLIGHT
- Small difference at high-W from nuclear density (~ high-x_γ)

Flux for photon-nucleus interactions

• Integrate over $b > 2R_A$ to reject hadronic interactions

$$x_{\gamma} f_{\gamma}^{A}(x_{\gamma}) = \frac{2\alpha_{\rm EM}Z^{2}}{\pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right],$$

where $\xi = 2R_A x_{\gamma} m/\hbar c$

• Maximum $W_{\gamma Pb} \approx 2\sqrt{s}$ in HERA

Photo-nuclear dijet production

- ATLAS analysis [ATLAS-CONF-2017-011] anti- $k_{\rm T},\,R=0.4,\,p_{\rm T}^{\rm lead}>$ 20 GeV, $p_{\rm T}^{\rm jets}>$ 15 GeV, $|\eta|<$ 4.4
- Event-level variables:

$$m_{jets} = \sqrt{(\Sigma_i E_i)^2 - |\Sigma_i \vec{p}_i|^2}, \qquad H_T = \Sigma_i p_{Ti}$$
$$y_{jets} = \frac{1}{2} \log \left(\frac{\Sigma_i E_i + \Sigma_i p_{Zi}}{\Sigma_i E_i - \Sigma_i p_{Zi}} \right) \qquad x_A = \frac{m_{jets}}{\sqrt{s}} e^{-y_{jets}}$$

Differential photo-nuclear dijet distributions (Preliminary)

EPPS16 will be implemented to the next PYTHIA release

- The expected nPDF features visible in x_A: shadowing, etc...
- Nuclear modifications only in hard-process cross sections

Expected potential of the dijet data

Dominant contribution

- Large x_A: resolved
- Small x_A: direct

Expected statistical error

- Assume $L = 1 \text{ nb}^{-1}$ for the measurement
- Clearly smaller than nPDF uncertainty

 \Rightarrow Potential to provide further constraints for nPDFs down to $x\approx 10^{-3}$

Dijet η distribution

Dijet kinematics

- Due to soft γ spektrum jets asymmetrically distributed in η
- No need to push for large η to gain sensitivity to small x

Quantifying the impact of the data to nPDFs requires

- Finalized data
- NLO calculation for photoproduction of dijets
- Accurate description of photon flux from nuclei

Summary & Outlook

Summary

Photoproduction implemented into PYTHIA 8

- Automatic mixing of direct and resolved processes
- Full parton-level evolution (parton showers, MPIs)
- Agreement with HERA data, support for MPIs
- Can simulate UPCs by using heavy-ion specific photon flux (though not yet with nuclear targer but with nPDFs)

Ultra-peripheral heavy-ion collisions

- Use dilepton production to calibrate the photon flux
- Can study photo-nuclear processes with LHC before EIC
- Dijets provide nPDF constraints down to $x \sim 10^{-3}$
- Number of potential observables, increased low-x reach at lower $p_{\rm T}$

Things to do

- Merge UPCs with new heavy-ion machinery (Angantyr) recently introduced to PYTHIA 8
- Improve efficiency (currently optimized for ep)
- Hard diffraction for photoproduction (see I.H. on Friday)
 - Based on diffractive PDFs and dynamical rapidity gap survival from MPIs, extend to nuclear target
- $\cdot\,$ Smooth merging of photoproduction and DIS

Backup slides

MPI and parton shower generation

Common evolution scale (p_T) for FSR, ISR and MPIs

· Probability for something to happen at given $p_{\rm T}$

$$\begin{split} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\rho_{\mathrm{T}}} &= \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\rho_{\mathrm{T}}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\rho_{\mathrm{T}}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\rho_{\mathrm{T}}}\right) \\ &\times \exp\left[-\int_{\rho_{\mathrm{T}}}^{\rho_{\mathrm{T}}^{\mathrm{max}}} \mathrm{d}p_{\mathrm{T}}' \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\rho_{\mathrm{T}}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\rho_{\mathrm{T}}'}\right)\right] \end{split}$$

where exp[...] is a Sudakov factor (probability that nothing else has happened before p_T)

Simultaneous partonic evolution

- 1. Start the evolution from a scale related to the hard process
- 2. Sample p_T values for each P_i , pick one with highest p_T
- 3. Continue from the sampled $p_{\rm T}$ until reach $p_{\rm Tmin} \sim \Lambda_{\rm QCD}$

DGLAP equations for photons

- Additional term due to $\gamma \to {\bf q} \overline{{\bf q}}$ splittings

$$\frac{\partial f_i^{\gamma}(\mathbf{x}, Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\text{em}}}{2\pi} \mathbf{e}_i^2 \mathbf{P}_{i\gamma}(\mathbf{x}) + \frac{\alpha_{\text{s}}(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} \, \mathbf{P}_{ij}(z) \, f_j(\mathbf{x}/z, Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1 - x)^2)$ for quarks, 0 for gluons (LO)

• Solution has two components:

$$f_i^{\gamma}(x,Q^2) = f_i^{\gamma,\text{pl}}(x,Q^2) + f_i^{\gamma,\text{had}}(x,Q^2)$$

- Point-like part from perturbative QCD
- Non-perturbative input required for the hadron-like part

$$f_i^{\gamma,\text{had}}(x,Q_0^2) = N_i x^{a_i} (1-x)^{b_i}$$

Parameter fixed in a global analysis

Charged particle η dependence in ep collisions at HERA

[Eur.Phys.J. C10 (1999) 363-372]

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets [Eur.Phys.J. C23 (2002) 615-631]

- Good agreement with the data
- Some sensitivity to MPIs with $x_{\gamma}^{\rm obs} < 0.75$