Photon-photon collisions with PYTHIA8 MCnet 2015

Ilkka Helenius
in collaboration with Torbjörn Sjöstrand

Lund University
Department of Astronomy and Theoretical Physics
F/MCnet
24.9.2015

Outline

1 Introduction
Motivation
2 Proton-proton collisions
Hard process
Parton distribution functions
Parton showers
Beam remnants
3 Photon-photon collisions
Photon PDFs
Initial state radiation with photon beams
Beam remnants
Results
4 Summary \& Outlook

Motivation

Goal

- Simulate photon-photon collisions with PYTHIA8 Monte Carlo Event Generator

Why consider $\gamma+\gamma$ collisions?

- Interesting on its own right
- Background for the future $\mathrm{e}^{+}+\mathrm{e}^{-}$collisions

Why not just use PYTHIA6?

- The PYTHIA6 model got quite complicated and fragile
- New sets of photon PDFs since PYTHIA6
- Lots of developments in the event generation in PYTHIA8
\Rightarrow New simpler and more robust implementation

Hard process

Proton-proton collision:

- Composite beams, interactions happens between the partons

Hard process

Proton-proton collision:

- Composite beams, interactions happens between the partons

Collinear Factorization

Factorize long and short distance physics:

$$
\mathrm{d} \sigma^{p+p \rightarrow k+l}=\sum_{i, j} f_{i}\left(x_{1}, Q^{2}\right) \otimes f_{j}\left(x_{2}, Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}^{i+j \rightarrow k+l}
$$

- $\mathrm{d} \hat{\sigma}^{i+j \rightarrow k+l}$ from perturbative QCD
- $f_{i}\left(x, Q^{2}\right)$ non-perturbative but universal parton distribution functions

Parton distribution functions (PDFs)

DGLAP evolution equations

$$
\frac{\partial f_{i}\left(x, Q^{2}\right)}{\partial \log Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} P_{i j}(z) f_{j}\left(x / z, Q^{2}\right)
$$

where $P_{i j}(z)$ are splitting functions for $j \rightarrow i k$ splitting ($\mathrm{q} \rightarrow \mathrm{qg}, \mathrm{q} \rightarrow \mathrm{gq}$, $\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ and $\mathrm{g} \rightarrow \mathrm{gg}$)

PDFs obtained through a global analysis
11 Parametrize $f_{i}\left(x, Q^{2}\right)$ at chosen initial scale $Q_{0}(\sim 1 \mathrm{GeV})$

$$
f_{i}\left(x, Q_{0}^{2}\right)=N_{i} x^{a_{i}}(1-x)^{b_{i}} F\left(x, c_{i}, \ldots\right)
$$

2 Use DGLAP equations to calculate $f_{i}\left(x, Q^{2}\right)$ at $Q>Q_{0}$
3 Calculate cross section with the evolved PDFs
4 Fit to data to obtain the values for parameters $a_{i}, b_{i}, c_{i}, \ldots$

Parton showers

The partons taking part to hard process can emit additional partons

- After the interaction: Final state radiation (FSR)
- Before the interaction: Initial state radiation (ISR)

Splitting probabilities from DGLAP evolution

- Final state radiation

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\mathrm{d} Q^{2}}{Q^{2}} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} z
$$

- Initial state radiation (Backwards evolution)

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\mathrm{d} f_{b}}{f_{b}}=\frac{\mathrm{d} Q^{2}}{Q^{2}} \frac{x^{\prime} f_{a}\left(x^{\prime}, Q^{2}\right)}{x f_{b}\left(x, Q^{2}\right)} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} z \quad\left(x^{\prime}=x / z\right)
$$

\Rightarrow Showers generated by evolving down a common evolution scale

Beam Remnants

After parton shower beam remnants need to be constructed

Add partons to final state

- Decide whether the parton from the beam is a valence parton
- Add required number of partons so that flavour is preserved
- Construct the kinematics so that total momenta is conserved
- Choose x 's according to PDFs and rescale
- After all partons are created the event can be hadronized

Photon-photon collisions

- High-energy photons can fluctuate into a hadronic state with equal quantum numbers
- The hard interaction happens between the partons

\Rightarrow To simulate these collisions PDFs for photons are required
- Can be obtained from global DGLAP analysis

PDFs for photon

DGLAP equations for photons

- Additional term due to $\gamma \rightarrow \mathrm{q} \overline{\mathrm{q}}$ splittings

$$
\frac{\partial f_{i}^{\gamma}\left(x, Q^{2}\right)}{\partial \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{EM}}}{2 \pi} e_{i}^{2} P_{i \gamma}(x)+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} P_{i j}(z) f_{j}\left(x / z, Q^{2}\right)
$$

where $P_{i \gamma}(x)=3\left(x^{2}+(1-x)^{2}\right)$ for quarks, 0 for gluons (in LO)

- Solution has two components:

$$
f_{i}^{\gamma}\left(x, Q^{2}\right)=f_{i}^{\gamma, \mathrm{pl}}\left(x, Q^{2}\right)+f_{i}^{\gamma, \text { had }}\left(x, Q^{2}\right)
$$

- Point-like part, calculated from pQCD
- Hadron-like part need non-perturbative input which is fixed by data

$$
f_{i}^{\gamma, \operatorname{had}}\left(x, Q_{0}^{2}\right)=N_{i} x^{a_{i}}(1-x)^{b_{i}}
$$

Data for photon PDFs

- Photon structure functions can be measured in $\mathrm{e}^{-}+\mathrm{e}^{+}$collisions

"Photon DIS"

- Other electron emits a virtual photon (γ^{*})
\Rightarrow This electron is measured
- Other electron is not detected as the scattering angle is small \Rightarrow Photon from this electron has small virtuality
- Also $W_{\gamma \gamma}$ need to be measured to construct kinematics
- Data available mainly from different LEP experiments ($\mathcal{O}(200)$ points)
- Precision and kinematic coverage more limited than for proton PDFs

Photon PDF fits

- Several groups have performed photon PDF analyses

- Reasonable agreement between the data and the fits
- Currenty we are using PDFs from CJKL analysis [PRD 68014010 (2003)]
- Provides a parametrization for the PDFs
- Provides point-like and hadron-like parts separately

ISR with photon beams

Different DGLAP evolution

- The splitting probability for ISR is modified

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\mathrm{d} Q^{2}}{Q^{2}} \frac{x^{\prime} f_{a}^{\gamma}\left(x^{\prime}, Q^{2}\right)}{x f_{b}^{\gamma}\left(x, Q^{2}\right)} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} z+\frac{\mathrm{d} Q^{2}}{Q^{2}} \frac{\alpha_{\mathrm{EM}}}{2 \pi} \frac{e_{b}^{2} P_{\gamma \rightarrow b c}(x)}{f_{b}^{\gamma}\left(x, Q^{2}\right)}
$$

- New term in ISR algorithm corresponding the probability to find the original beam photon during evolution

- Needs to be taken account in the beam remnant handling

ISR comparison

- The PDFs integrated over relevant region of x

- Number of partons produced below Q^{2} from ISR algorithm

Backwards evolution should produce the same results as the PDF evolution

- Heavy quarks disappears at the mass thresholds
- CJKL analysis uses $\operatorname{ACOT}(\chi)$ scheme to deal with heavy quarks \Rightarrow Some differences in scale evolution

Beam remnants

Photon remnants

- Two "valence" quarks, flavors can fluctuate
- Valence quarks from hadron-like PDF component
- Quarks from $\gamma \rightarrow \mathrm{q} \overline{\mathrm{q}}$ splittings
- Use the information in the PDFs to determine whether the parton from beam was a valence quark
- Yes: Beam remnant is the corresponding (anti-)quark
- No: Sample the valence content according to PDFs
- If ISR ends up to the original photon no need for remnants

Three possibilities

- Remnants from both beams
- Remnants from one beam

- No remnats

Charged particle p_{T} spectrum

Comparison to $\mathrm{p}+\mathrm{p}$

- Cross section smaller due to EM-coupling ($\alpha_{\text {EM }}^{2} \sim 10^{-4}$)
- Harder spectra due to larger number of high- x partons

- Generated with ISR+FSR
- No MPI considered yet

Summary \& Outlook

Summary

- Implement photon-photon collisions into PYTHIA8 event generator
- Current status
- Included PDFs for photons to generate the hard process
- Modified the ISR algorithm to include the $\gamma \rightarrow \mathrm{q} \bar{q}$ splittings
- Modified beam remnant handling with and without ISR
- Developments will be included to public PYTHIA8 version soon

Outlook

- Consider also virtual photons and photon emission from electron beam
- Include possibility for MPI

Extra Slides

Backup

$\operatorname{ACOT}(\chi)$ scheme for heavy quarks

DIS kinematics

- Limit for heavy quark production

$$
W^{2}=Q^{2}\left(x^{-1}-1\right)>\left(2 m_{H}\right)^{2}
$$

- In $\operatorname{ACOT}(\chi)$ scheme this is taken into account by rescaling

$$
x \rightarrow \chi=x\left(1+4 m_{H}^{2} / Q^{2}\right)
$$

- In CJKL the heavy quark PDFs are zero for $x>1 /\left(1+\frac{4 m_{H}^{2}}{Q^{2}}\right)$

$\gamma+\gamma$ kinematics

- Heavy quark limit not related to Q^{2} but $\sqrt{s} \Rightarrow$ Undo rescaling

$$
x \rightarrow x /\left(1+4 m_{H}^{2} / Q^{2}\right)
$$

ISR with photon beams

- The x-distribution for the specific kinematics

