Photon-photon interactions with PYTHIA 8: Current status and future plans FCC-ee Mini-Workshop: "Physics Behind Precision"

Ilkka Helenius in collaboration with Torbjörn Sjöstrand

Lund University Department of Astronomy and Theoretical Physics

2.2.2016

Outline

1 Introduction

- Event generation in PYTHIA 8
- 2 Photon-photon interactions
 - PDFs for photons
 - Initial state radiation with photon beams
 - Beam remnant handling
 - Results
- 3 Future plans
 - Photon flux from electron beams
- 4 Summary

Hard process

Collinear factorization

$$\mathrm{d}\sigma^{p+p\to k+l} = \sum_{i,j} f_i(x_1,Q^2) \otimes f_j(x_2,Q^2) \otimes \mathrm{d}\hat{\sigma}^{i+j\to k+l}$$

Scale evolution for PDFs given by DGLAP equation

Initial state radiation (ISR)

- Backwards evolution, trace back splittings before the hard process
- Splitting probability from DGLAP (Conditional probability)

$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}f_b}{f_b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{x'f_a(x',Q^2)}{xf_b(x,Q^2)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z$$

Final state radiation (FSR)

- Forward evolution, find splittings after the hard process
- Splitting probability from DGLAP

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z,$$

Multiparton interactions (MPI)

- ▶ Number of MPIs regulated by screening parameter p_{T0} (~ 2 GeV/c)
- Interleaved generation with ISR and FSR using p_T as a common evolution scale equipped with Sudakov factors

Multiparton interactions (MPI)

- ▶ Number of MPIs regulated by screening parameter p_{T0} (~ 2 GeV/c)
- Interleaved generation with ISR and FSR using p_T as a common evolution scale equipped with Sudakov factors
 - \Rightarrow Further emissions from partons generated by MPIs

Beam Remnants

- Add required number of partons to conserve flavour and colour
- Add primordial k_T for the partons
- Fix the momentum of remnant partons to obtain total momentum conservation

Hadronization with Lund string model

- Connect partons with colour strings
- Allow colour strings to be reconnected (Colour reconnection)

Hadronization with Lund string model

- Connect partons with colour strings
- Allow colour strings to be reconnected (Colour reconnection)
- Let the strings decay and form hadrons
- Decays to stable hadrons

Photon-photon collisions

Motivation

- ► Give access to many interesting processes and test QCD factorization
- Background for future e⁺e⁻ colliders, higher rate with higher luminosity
- ► Aim for a new robust model exploiting Pythia 8 developments

Current status (PYTHIA 8.215)

- \blacktriangleright Can generate hard processes in resolved $\gamma\gamma$ interaction with real photons
- Can generate ISR and FSR with photon beams
- Beam remnants with primordial k_T can be added
- Events can be hadronized

Resolved photons

- ► Partonic structure of resolved photons described with PDFs
- PDFs obtained via global QCD analysis

DGLAP equations for photons

- Additional term due to $\gamma
ightarrow {
m q} {ar q}$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{em}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1-x)^2)$ for quarks, 0 for gluons (LO)

Solution has two components:

$$f_i^{\gamma}(x,Q^2) = f_i^{\gamma,\mathrm{pl}}(x,Q^2) + f_i^{\gamma,\mathrm{had}}(x,Q^2)$$

Hadron-like part need non-perturbative input which is fixed by data

$$f_i^{\gamma, \text{had}}(x, Q_0^2) = N_i x^{a_i} (1-x)^{b_i}$$

Photon PDFs

Several groups have performed photon PDF analyses

- Reasonable agreement between the data and the fits
- Currenty we are using PDFs from CJKL analysis [PRD 68 014010 (2003)]
 - Leading order analysis, consistent with LO MC
 - Provides a parametrization for the PDFs
 - Provides point-like and hadron-like parts separately

ISR with photon beams

Different DGLAP evolution

 \blacktriangleright Need to add a term corresponding to $\gamma \to q \bar{q}$ splitting

$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{x' f_a^{\gamma}(x',Q^2)}{x f_b^{\gamma}(x,Q^2)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{EM}}{2\pi} \frac{e_b^2 P_{\gamma\to bc}(x)}{f_b^{\gamma}(x,Q^2)}$$

- Possibility to end up to the original photon during the evolution
 No further emissions
 - \Rightarrow No need for beam remnants

ISR vs PDFs

Backwards evolution should give same number of partons as PDF evolution

The PDFs integrated over relevant region of x Number of particles produced below Q² from ISR algorithm

- Qualitatively similar behaviour but also some differences due to different inputs
- ► CJKL analysis uses ACOT(χ) scheme to deal with heavy quark masses ⇒ Some differences in scale evolution

Beam remnants

Valence content of resolved photon

- ▶ Two "valence" quarks $(q\bar{q} pair)$, flavors can fluctuate
- Decompose PDFs to valence and sea parts

$$f_i^\gamma(x,Q^2) = f_{i,\mathrm{val}}^\gamma(x,Q^2) + f_{i,\mathrm{sea}}^\gamma(x,Q^2)$$

- Decide whether the parton from beam is a valence quark
 - ▶ If yes: Other valence quark is the corresponding (anti)quark
 - If not: Sample valence flavour using PDFs

A problem:

- Decomposition not provided
- CJKL: Valence content for hadron-like part

 $f_{i,\mathrm{val}}^{\gamma} = f_{i,\mathrm{val}}^{\gamma,\mathrm{had}} + f_{i}^{\gamma,\mathrm{pl}}$

Beam remnants

- ► Add minimal number of partons to conserve flavour, e.g. if
 - \blacktriangleright a valence quark from beam \Rightarrow Add the other valence quark
 - a gluon from beam \Rightarrow Add the valence quarks
 - ► a sea quark from beam ⇒ Add the valence quarks + one companion quark

Need invariant mass for remnants

- Condition: $W_{\text{rem}} > W_1 + W_2$
- Definitive limit when interaction between two valence quarks:

$$\sqrt{s(1-x_1)(1-x_2)} > m_1 + m_2$$

- ⇒ Reject hard processes and ISR violating this condition
- Also primordial k_T increases the invariant mass

Results

Charged particle p_T spectrum

- $\gamma\gamma$ generated with
 - CJKL PDFs for photons
 - ISR and FSR
 - Beam remnants with primordial k_T
- MPIs are not included

Comparison to p+p

- Cross section smaller due to EM-coupling $(\alpha_{em}^2 \sim 10^{-4})$
- Harder spectra due to larger number of large-x partons

▶ p_T spectra of the hard $2 \rightarrow 2$ scattering showed for comparison (dashed)

Future plans

Soft processes and MPI

- Include also soft QCD processes
- \blacktriangleright For MPIs need a model for total $\gamma\gamma$ cross section

Photon emissions from electrons

- \blacktriangleright Needed to get the rate of $\gamma\gamma$ interactions in e^+e^-
- Photon flux machine dependent
 - ► For a circular collider (FCC-ee) bremsstrahlung dominant (EPA)

$$xf_{\gamma}^{\rm e}(x,Q^2) = \frac{\alpha_{em}}{2\pi} \log(Q^2/m_{\rm e}^2)(1+(1-x)^2)$$

- For linear e⁺e[−] collider with tighter bunches larger flux of photons
 ⇒ Need more flexible form for photon flux
- Consider also photon virtuality (so far only real photons)

Bonus: γp collisions

Once $\gamma\gamma$ is set up, easy to extend to γp

- Still need to make sure that remnants can be added
- γp not yet included to public version
- Also the photon emissions from proton could be included

 $\blacktriangleright d\sigma^{\gamma\gamma} < d\sigma^{\gamma p} < d\sigma^{pp}$

Summary & Outlook

Current status

- \blacktriangleright Can generate hard processes for resolved $\gamma\gamma$ interactions
- Parton showers can handle photon beams
- Beam remnants with primordial k_T can be added
- Events can be hadronized
 - \Rightarrow Included into Pythia 8.215

Future plans

- Model the photon flux from electron beams
- Consider virtuality of the photons
- Add soft interactions and MPIs
- \blacktriangleright Develop further γp and ep machinery

Backup

I. Helenius (Lund U.)

Parton distribution functions (PDFs)

- PDFs can not be calculated from first principles of QCD
- However, the Q^2 dependence is given by DGLAP evolution equations:

$$\frac{\partial f_i(x,Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where j runs over the parton flavours

$$P_{qq}(z) = \frac{4}{3} \left[\frac{1+z^2}{(1-z)_+} + \frac{3}{2} \delta(1-z) \right]$$

$$P_{qg}(z) = \frac{4}{3} \left[\frac{1+(1-z)^2}{z} \right]$$

$$P_{gq}(z) = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$

$$P_{gq}(z) = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$

$$P_{gq}(z) = 6 \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) + \frac{11-\frac{2}{3}n_f}{12} \delta(1-z) \right]$$

Data for photon PDFs

 \blacktriangleright Photon structure functions can be measured in $\mathrm{e^-}{+}\mathrm{e^+}$ collisions

"Photon DIS"

- ► Other electron emits a virtual photon (γ*)
 - \Rightarrow This electron is measured
- Other electron is not detected as the scattering angle is small
 - \Rightarrow Photon from this electron has small virtuality
- Also W_{γγ} need to be measured to construct kinematics
- Data available mainly from different LEP experiments ($\mathcal{O}(200)$ points)
- Precision and kinematic coverage more limited than for proton PDFs

$ACOT(\chi)$ scheme for heavy quarks

DIS kinematics

- ► Limit for heavy quark production $W^2 = Q^2 (x^{-1} 1) > (2m_H)^2$
- In ACOT(χ) scheme this is taken into account by rescaling

 $x \to \chi = x(1 + 4m_H^2/Q^2)$

- In CJKL the heavy quark PDFs are zero for $x>1/(1+\frac{4m_{H}^{2}}{Q^{2}})$

$\gamma + \gamma$ kinematics

• Heavy quark limit not related to Q^2 but $\sqrt{s} \Rightarrow$ Undo rescaling $x \rightarrow x/(1 + 4m_H^2/Q^2)$