$\mathrm{e}^{+} \mathrm{e}^{-}$in PYthia 8

ECFA Higgs Factories: 1St Topical Meeting on Generators 2021

Ilkka Helenius
November 9th, 2021
JYVÄSKYLÄN YLIOPISTO
UNIVERSITY OF JYVÄSKYLÄ

Outline

Outline

1. Pythia 8 basics
2. Hadronization
3. $\gamma \gamma$ collisions
4. Precision studies
5. LHE interface
6. Summary \& Outlook

[figure by P. Skands]

PYthia event generator

(subset of) Physics covered in 8.3

- Different beam combinations: ee, $\gamma \gamma$, ep, γ p, pp, pA, AA, DM
- Hard scattering: native LO, NLO+PS with aMC@NLO and Powheg-Box
- Parton showers: Default, DIRE, VINCIA
- Multiparton interactions (MPIs): Interleaved with shower evolution
- Soft physics: Diffraction, Elastic, Hadronic (re-)scattering

[figure by P. Skands]
- Hadronization: String fragmentation, Color reconnection, Ropes \& shoving

Pythia Collaboration

- Christian Bierlich
(Lund University)
- Nishita Desai (TIFR, Mumbai)
- Leif Gellersen (Lund University)
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Stefan Prestel
- Christian Preuss
- Torbjörn Sjöstrand
- Peter Skands (University of Jyväskylä) (University of Cincinnati)
(Lund University) (Fermilab)
(Lund University)

[Pythia meeting in Monash 2019]
- Marius Utheim
(University of Jyväskylä)
- Rob Verheyen (University College London)

PYTHIA Collaboration

- Christian Bierlich
(Lund University)
- Nishita Desai (TIFR, Mumbai)
- Leif Gellersen
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Stefan Prestel
- Christian Preuss
- Torbjörn Sjöstrand
- Peter Skands
- Marius Utheim
- Rob Verheyen (University College London)
(University of Jyväskylä) (University of Cincinnati)
(Lund University) (Fermilab)
(Lund University) (ETH Zurich)
(Lund University) (Monash University) (University of Jyväskylä)

[Pythia meeting in Monash 2019]
- Spokesperson
- Codemaster
- Webmaster
https://pythia.org
authors@pythia.org

Hadronization

Hadronization in PYtHIA

The Lund string model

- Colour string between q and $\overline{\mathrm{q}}$, linear string potential $V(r) \propto \kappa r$
- String breaking with symmetric fragmentation function

$$
f(z) \propto \frac{(1-z)^{a}}{z} \exp \left(-b m_{T}^{2}\right)
$$

- Strings taken non-interacting
\Rightarrow Universal fragmentation
- First experimental support from 3-jet events in Petra
- Still main constraints from LEP

[JADE: Phys.Lett.B 101 (1981) 129-134]

Universality breaking in hadronic collisions

Colour reconnection (CR)

- Initial colour configuration from PS splittings (large N_{C})
- Possible to find a preferred (string-length minimizing) configuration by altering the colour connections

Available Pythia models

- MPI-based scheme (default)
- QCD-based scheme
- Baryon production
enhanced by junction-style reconnection

Interacting strings

Rope hadronization

[Bierlich, Gustafson, Lönnblad, Tarasov: JHEP 03 (2015) 148]

- Introduce a finite width for the colour field
- Strings \rightarrow Ropes
- Overlapping strings enhance string tension in high-multiplicity collisions
- Strangeness and baryon enhancement
- Rope hadronization implemented into Pythia 8

String shoving
[Bierlich, Gustafson, Lönnblad: PLB 779 (2018) 58]

- Repulsion between overlapping strings produce long-range correlations (the ridge effect)

[ALICE Nature Phys. 13 (2017) 535-539]

Future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders

Wish list for hadronization studies

- Identified hadrons with $\Delta|p| \lesssim \Lambda_{\mathrm{QCD}}$
\Rightarrow Clean constraints for hadronization models, including promptly decaying ones

- High statistics for ee \rightarrow WW
\Rightarrow Clean environment to study CR effects, no-CR scenario excluded at 99.5\% in LEP II [Phys.Rept. 532 (2013) 119], see also a study for Higgs decays [Christiansen, Sjöstrand: EPJC 75 (2015) 9, 441]
\Rightarrow Interleaved resonance decays with parton shower, implemented in VINCIA [Brooks, Skands, Verheyen: arXiv:2108.10786]

[arXiv:2108.10786]
$\gamma \gamma$ collisions

$\gamma \gamma$ collisions

- High-energy charged leptons radiate photons, approx. flux given by EPA:

$$
f_{\gamma}^{l}\left(y, Q^{2}\right)=\frac{\alpha_{\mathrm{em}}}{2 \pi} \frac{1+(1-y)^{2}}{y} \frac{1}{Q^{2}}
$$

where y the light-cone fraction of the photon wrt. lepton momentum and Q^{2} photon virtuality $\Rightarrow \gamma \gamma$ collisions

Direct photons

- Point-like initiator of the hard process, "PDF" given by the flux

Resolved photons

- Low Q^{2} Photon may fluctuate into a hadronic state \Rightarrow MPIs
- PDFs for partonic structure

Resolved photons

PDFs for for resolved photons

- DGLAP evolution contain term for $\gamma \rightarrow \mathrm{q} \bar{q}$

$$
\frac{\partial f_{i}^{\gamma}\left(x, Q^{2}\right)}{\partial \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{em}}}{2 \pi} e_{i}^{2} P_{i \gamma}(x)+\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} z}{z} P_{i j}(z) f_{j}\left(x / z, Q^{2}\right)
$$

- Convolute PDFs with the flux, save $\left(y, Q^{2}\right)$

Initial state shower for resolved photons

- The $\gamma \rightarrow \mathrm{q} \overline{\mathrm{q}}$ splitting can collapse photon to unresolved state during evolution

$$
\mathrm{d} \mathcal{P}_{a \leftarrow b}=\frac{\mathrm{d} Q^{2}}{Q^{2}} \frac{\alpha_{s}}{2 \pi} \frac{x^{\prime} f_{a}^{\gamma}\left(x^{\prime}, Q^{2}\right)}{x f_{b}^{\prime}\left(x, Q^{2}\right)} P_{a \rightarrow b c}(z) \mathrm{d} z+\frac{\mathrm{d} Q^{2}}{Q^{2}} \frac{\alpha_{\mathrm{em}}}{2 \pi} \frac{e_{b}^{2} P_{\gamma \rightarrow b c}(x)}{f_{b}^{\prime}\left(x, Q^{2}\right)}
$$

- MPIs allowed above the scale of such splitting (interleaved PS and MPIs)

Comparison to LEP $\gamma \gamma$ data

[OPAL: Phys. Lett. B651 (2007) 92-101]

OPAL data for charged-hadron $\mathrm{d} \sigma / \mathrm{d} p_{T}$

- Data taken with $\sqrt{S_{\text {ee }}}=161$ and 172 GeV
- Based on anti-tagging of beam leptons \Rightarrow (quasi-)real photons

Pythia results

- Contributions from resolved (low- p_{T}) and direct photons (high- p_{T})
- Sensitivity to MPIs at $\approx f e w ~ G e V ~$

Invariant mass dependence

[OPAL: Phys. Lett. B651 (2007) 92-101]

Can use OPAL data to
constrain MPI parameters

- $W=$ invariant mass of $\gamma \gamma$ system
- Larger contribution from resolved processes with higher W, also more MPIs
- Fit energy dependence of MPI regulator $p_{T, 0}$
- Fitted result set as default in Pythia 8 for $\gamma \gamma$

$$
p_{\mathrm{T} 0}^{\gamma \gamma}(\sqrt{\mathrm{s}})=1.567 \mathrm{GeV}+0.419 \cdot \log [\sqrt{\mathrm{~s}} / 100 \mathrm{GeV}]
$$

Precision studies

Precision in parton showers

Matching Fixed-order and parton showers

New native PS options in PYtHIA 8.3

VINCIA

[Fischer, Prestel, Ritzmann, Skands: EPJC 11 (2016) 589]

- Coherent evolution (antenna pattern)
- Iterated LO ME corrections
- QCD, QED and EW (all splittings), interleaved resonance decays

DIRE
[Höche, Prestel: EPJC 75 (2015) 9, 461]

- Coherent evolution, split into collinear regions
- NLO corrections for the evolution, ME corrections
- QCD, QED, ~EW, dark photons

Future improvements

Proof of concept NNLO+PS in VINCIA
[Campbell, Höche, Li, Preuss, Skands:
arXiv:2108.07133]

- Focus on $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z \rightarrow$ two jets
- Possible to adapt formalism also to more complicated final states but require more effort
- Publicly available \sim 1-2 years

N3LO+PS with TOMTE ${ }^{1}$ method

${ }^{1}$ Third Order Mathced Transition Events
[Prestel: arXiv:2106.03206]

- Currently in proof-of-concept state
- Tested for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ jets
- Part of Dire, unclear if a PythiA implementation will follow

Interfacing

Interfacing ME and general-purpose generators

Les Houches event files (LHEF)

- Provide Parton-level ME generator based hard processes as a set of four-momenta in <event>. . .</event> blocks
- Beam and relevant generator settings provided in <header>...</header>
- Can also include optional event information, such as PDF or scale variations

Pythia 8.3 interface

- Can read and write LHEF v1 and v3 formats
- Handles any number of xml tags (such as <event>, e.g. for NLO matching)
- Has handled \#pdf tags from the beginning for PDF uncertainties
- Now handles also Madgraph scale variations consistently, shower variations correctly propagated into HepMC (main89.cc)
- Possible to read in two hard processes in the same event

Interfacing ME and general-purpose generators

Possible extensions in LHEF

- Standard for separate shower starting scale setting for resonance decays, currently some "private agreements" between Powheg and Pythia
- Separation of photons emitted by bremsstrahlung and beamstrahlung (relevant especially for linear $\mathrm{e}^{+} \mathrm{e}^{-}$colliders)
$\Rightarrow p_{T}$ kicks can be large for the former but negligible for the latter
- Store intermediate γ kinematics for resolved photons (though currently not many ME generators available)

Interfacing ME and general-purpose generators

Possible extensions in LHEF

- Standard for separate shower starting scale setting for resonance decays, currently some "private agreements" between Powheg and Pythia
- Separation of photons emitted by bremsstrahlung and beamstrahlung (relevant especially for linear $\mathrm{e}^{+} \mathrm{e}^{-}$colliders)
$\Rightarrow p_{T}$ kicks can be large for the former but negligible for the latter
- Store intermediate γ kinematics for resolved photons (though currently not many ME generators available)

> What else?

Summary \& Outlook

Pythia 8.3

- Extensions to string hadronization
- Collision with (quasi-)real photons
- New shower models with improved precision
- Generic LHEF (v1 and v3) interface

Upcoming features

- A new parallelization framework for multithreading
- Further improvements in matching precision

[figure by P. Skands]

