Diffraction in photoproduction with Pythia 8

6th Workshop on QCD and Diffraction

Ilkka Helenius

November 15th, 2018

University of Jyväskylä Department of Physics

In collaboration with Christine O. Rasmussen and Torbjörn Sjöstrand

Motivation

- Evidence for factorization breaking for diffractive dijet photoproduction at HERA
- Photoproduction can be studied in ultra-peripheral collisions (UPCs) at the LHC (with protons and nuclei)

Outline

Pythia implementation

- Simulate hard diffraction in γp by combining
 - 1. Recently introduced photoproduction framework [I.H. and T.S.]
 - 2. Hard diffraction model for pp collisions [C.O.R. and T.S.]
- With an appropriate photon flux the framework can be applied to ep and also ultra-peripheral pp and pPb collisions

Outline

- 1. Photoproduction in Pythia 8
- 2. Hard diffraction in ep
- 3. Predictions for UPCs at the LHC
- 4. Soft diffraction with photons
- 5. Summary

Event generation in Pythia 8

1. Hard scattering

• Convolution of LO partonic cross sections and PDFs

2. Parton showers

- Generate Initial and Final State Radiation (ISR & FSR) using DGLAP evolution
- 3. Multiparton interactions (MPIs)
 - Use regularized QCD 2 ightarrow 2 cross sections

4. Beam remnants

Minimal number of partons to conserve colour and flavour

5. Hadronization

- Using Lund string model with color reconnection
- Decays into stable hadrons

Photoproduction in Pythia 8

Photoproduction

Photoproduction: Small photon virtuality $Q^2 \lesssim 1 \text{ GeV}^2$ (cf. DIS)

- Factorize the photon flux $f_{\gamma}(x)$ from the hard scattering, hard scale provided by the hard process
- Sample photon kinematics (x, Q^2) and set up γp sub-collision with $W_{\gamma p}$

Direct processes

- Photon initiator of the hard process
- No MPIs but FSR and ISR for hadron

Resolved processes

- Photon fluctuates into a hadronic state
- Partonic structure described with PDFs
- FSR and ISR for both sides and MPIs
- Also soft QCD processes possible

Flux depends on the beam particle

• Photon flux from leptons, $Q^2 = -q^2$, integrated over allowed virtualities (Weizsäcker-Williams)

$$f_{\gamma}^{l}(\mathbf{x}) = \frac{\alpha_{\text{em}}}{2\pi} \frac{(1 + (1 - \mathbf{x})^{2})}{\mathbf{x}} \log \left[\frac{Q_{\text{max}}^{2}}{Q_{\text{min}}^{2}(\mathbf{x})} \right]$$

• Photon flux from protons (Drees-Zeppenfeld), take into account form factor $F_E(Q^2)$ of a proton:

$$f_{\gamma}^{p}(x) = \frac{\alpha_{\text{em}}}{2\pi} \frac{(1+(1-x)^{2})}{x} \left[\log(A) - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^{2}} + \frac{1}{3A^{3}} \right]$$

where $A = 1 + Q_{0}^{2}/Q_{\text{min}}^{2}$ and $Q_{0}^{2} = 0.71 \text{ GeV}^{2}$

Photon fluxes from equivalent photon approximation (EPA)

Photon flux from heavy ions in impact-parameter space b
 ⇒ Reject events where colliding nuclei overlap

$$f_{\gamma}^{A}(x) = \frac{2\alpha_{\rm EM}Z^{2}}{x\pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right]$$

where Z is nuclear charge, $\xi = b_{\min} x m / \hbar c$, m (per-nucleon) mass and K_i modified Bessel functions and $b_{\min} \approx R_A + R_B$

• Photon flux amplified by Z² but flux softer

- Probability for MPIs from 2 \rightarrow 2 QCD cross sections

$$\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}^{2}} = \frac{1}{\sigma_{\mathrm{nd}}(\sqrt{\mathrm{s}})} \frac{\mathrm{d}\sigma^{2\rightarrow2}}{\mathrm{d}p_{\mathrm{T}}^{2}},$$

where $\sigma_{\rm nd}(\sqrt{\rm s})$ is the non-diffractive cross section

- Partonic cross section diverges at $p_T \rightarrow 0$
 - \Rightarrow Regulate the divergence with a screening parameter p_{T0}

$$\frac{\mathrm{d}\sigma^{2\to2}}{\mathrm{d}p_{\mathrm{T}}^2} \propto \frac{\alpha_{\mathrm{s}}(p_{\mathrm{T}}^2)}{p_{\mathrm{T}}^4} \to \frac{\alpha_{\mathrm{s}}(p_{\mathrm{T0}}^2 + p_{\mathrm{T}}^2)}{(p_{\mathrm{T0}}^2 + p_{\mathrm{T}}^2)^2}$$

- Average number of interactions: $\langle n \rangle = \sigma_{int}(p_{T0})/\sigma_{nd}$
- Parameter energy-dependent: $p_{T0}(\sqrt{s}) = p_{T0}^{ref}(\sqrt{s}/\sqrt{s_{ref}})^{\alpha}$ (Monash tune: $p_{T0}^{ref} = 2.28 \text{ GeV/c}, \alpha = 0.215, \sqrt{s_{ref}} = 7 \text{ TeV}$)
- · Generated simultaneously with the parton shower

Charged particle p_T spectra in ep collisions at HERA

[H1: Eur.Phys.J. C10 (1999) 363-372]

H1 measurement

- $E_{\rm p} = 820~{
 m GeV}, E_{\rm e} = 27.5~{
 m GeV}$
- \cdot < W $_{\gamma p}$ > $\,pprox$ 200 GeV
- $Q_{\rm max}^2 = 0.01 \, {\rm GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
 - p_{T0}^{ref} controls \mathcal{P}_{MPI} $\Rightarrow \langle n_{\gamma p} \rangle < \langle n_{pp} \rangle$
- No constraints on $W_{\gamma p}$ dependence (same as pp)

Hard diffraction in in ep

Hard diffraction in ep

Diffractive dijets

- Photon interacts with Pomeron from proton producing jets
- $\cdot\,$ Can be DIS or photoproduction
- Signature: scattered proton or a rapidity gap between proton and Pomeron remnant

[Figure: H1: JHEP 1505 (2015) 056]

Factorized cross section for diffractive dijets

- Direct: $d\sigma^{2jets} = f_{\gamma}^{e}(X) \otimes d\sigma^{\gamma j \to 2jets} \otimes f_{j}^{P}(Z_{P}, \mu^{2}) \otimes f_{P}^{p}(X_{P}, t)$
- Resolved: $d\sigma^{2jets} = f^{e}_{\gamma}(x) \otimes f^{\gamma}_{i}(x_{\gamma}, \mu^{2}) \otimes d\sigma^{ij \rightarrow 2jets} \otimes f^{P}_{j}(z_{P}, \mu^{2}) \otimes f^{P}_{P}(x_{P}, t)$ where f^{P}_{IP} is Pomeron flux and f^{IP}_{j} diffractive PDF (dPDF) and f^{γ}_{i} photon PDF (γ PDF)

Dynamical rapidity gap survival

• Originally introduced for pp [C.O.R. and T.S.: JHEP 1602 (2016) 142]

[Figure: H1: JHEP 1505 (2015) 056]

ep implementation [I.H., C.O.R., T.S.]

• Select diffractive events based on dPDFs (γ or proton)

(PDF selection)

- Check whether MPIs between (resolved) photon and proton
- Reject events where MPIs shroud the diffractive signature (MPI selection)

Event selection

- H1: [JHEP 1505 (2015) 056]
- $Q^2 < 2 \text{ GeV}^2$, 0.2 < y < 0.7
- $0.01 < x_{\mathbb{P}} < 0.024, z_{\mathbb{P}} < 0.8$
- $E_{\rm T}^{\rm jet1} > 5.5$, $E_{\rm T}^{\rm jet2} > 4.0~{\rm GeV}$
- $-1.0 < \eta^{\text{jet1,2}} < 2.5$

Event-level variables

•
$$x_{\gamma}^{\text{obs}} = \frac{\sum_{j \in t} (E^{j \in t} - p_z^{j \in t})}{\sum_{i \in X} (E^i - p_z^i)}$$

• $z_{\text{IP}}^{\text{obs}} = \frac{\sum_{j \in t} (E^{j \in t} + p_z^{j \in t})}{\sum_{i \in X} (E^i + p_z^j)}$
where X is the diffract

where X is the diffractive $(\gamma$ -IP) system

ZEUS: [E.P.J. C55, 177–191(2008)]

- $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85
- $x_{\mathbb{P}} < 0.025$
- $E_{\rm T}^{\rm jet1} > 7.5, E_{\rm T}^{\rm jet2} > 6.5~{\rm GeV}$
- $-1.5 < \eta^{\text{jet1,2}} < 1.5$

Default Pythia setup

- dPDFs from H1 fit B LO
- + $\gamma {\rm PDFs}$ from CJKL
- $p_{T0}^{ref} = 3.00 \text{ GeV}/c$

$Z_{\mathbb{P}}^{\text{obs}}$ distributions

- Pure factorization-based result overshoot both data
- Better (not perfect) agreement with MPI rejection
- Sensitive to the dPDFs

x_{γ}^{obs} distributions

- Suppression from MPIs stronger towards smaller $x_{\gamma}^{\rm obs}$ since direct processes dominate at large $x_{\gamma}^{\rm obs}$
- Reasonable agreement with H1 but not very good with ZEUS
- Observable sensitive to jet selection parameters

Invariant mass distributions

- MPI suppression stronger at high M_X
- Very good description of the data with the H1 fit B dPDFs
- Data favours calculations with MPI selection

Predictions for UPCs at the LHC

Theoretical setup

- \cdot pp and pPb collisions, flux from Pb dominates the latter
- Jet selection with anti- $k_{\rm T}$ algorithm with R = 1.0

$$\begin{aligned} E_{\rm T}^{\rm jet1} &> 8 \; {\rm GeV} & -4.4 < \eta^{\rm jet1,2} < 4.4 \\ E_{\rm T}^{\rm jet2} &> 6 \; {\rm GeV} & M_{\rm jets} > 14 \; {\rm GeV} \end{aligned}$$

- Currently no cut on $x_{\mathbb{IP}}$ as in HERA comparisons
- No need for Q² cut since always low in UPCs where photoproduction framework applicable Results still preliminary

$Z_{\mathbb{P}}^{\text{obs}}$ distributions

- Rejecting events with MPIs for γp system supresses cross section by 40 % (60 %) in pPb (pp)
- Supression stronger in pp since the harder flux leads to larger $W_{\gamma p}$ where more room for MPIs

x_{γ}^{obs} distributions

- Pure factorization-based result generates a large number of events at small- x_{γ}^{obs} due to small-x gluons in γ PDFs
- These are effectively cut out with MPI selection

Invariant mass of γp system

- · Average number of MPIs grow towards higher $W_{\gamma p}$
 - \Rightarrow Stronger suppression with MPI selection at high $W_{\gamma p}$
- $p_{T0}(W)$ in γp unconstrained beyond HERA kinematics \Rightarrow Lower p_{T0}^{ref} leads to further MPI suppression (higher \mathcal{P}_{MPI})

Soft diffraction with photons

• New: Photoproduction framework extented to elastic and soft diffractive processes using SaSDL model [I.H., C.O.R., T.S.]

 Will be implemented also within ep, e⁺e⁻ and UPCs for the next release

Summary

Hard diffraction in ep

- Hard diffraction with dynamical rapidity gap survival for photoproduction implemented into PYTHIA (8.235)
 - No additional parameters required
- Reasonable description of HERA data with MPI selection
- Several theoretical uncertainties (dPDFs, γ PDFs, p_{T0} value) Could be reduced by taking ratio to DIS (as in H1 analysis)

Hard diffraction in UPCs

- Larger effect from MPI rejection due to higher $W_{\gamma p}$
- Can study hard diffraction also with nuclear target in PbPb
 - Expect stronger MPI suppression due to several NN interactions
 - Pythia simulations will require to combine photoproduction with the recent PYTHIA heavy-ion model Angantyr

[C. Bierlich, G. Gustafson, L. Lönnblad and H. Shah: JHEP 1810 (2018) 134]

Backup slides

MPI and parton shower generation

Common evolution scale (p_T) for FSR, ISR and MPIs

• Probability for something to happen at given $p_{\rm T}$

$$\begin{split} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\mathrm{T}}} &= \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\mathrm{T}}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_{\mathrm{T}}}\right) \\ &\times \exp\left[-\int_{\rho_{\mathrm{T}}}^{\rho_{\mathrm{T}}^{\mathrm{max}}} \mathrm{d}p_{\mathrm{T}}' \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\mathrm{T}}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_{\mathrm{T}}'}\right)\right] \end{split}$$

where exp[...] is a Sudakov factor (probability that nothing else has happened before p_T)

Simultaneous partonic evolution

- 1. Start the evolution from a scale related to the hard process
- 2. Sample p_T values for each P_i , pick one with highest p_T
- 3. Continue from the sampled $p_{\rm T}$ until reach $p_{\rm Tmin} \sim \Lambda_{\rm QCD}$

DGLAP equations for photons

- Additional term due to $\gamma
ightarrow q\overline{q}$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\text{em}}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_{\text{s}}(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1 - x)^2)$ for quarks, 0 for gluons (LO) • Solution has two components:

$$f_i^{\gamma}(x,Q^2) = f_i^{\gamma,\text{pl}}(x,Q^2) + f_i^{\gamma,\text{had}}(x,Q^2)$$

- Point-like part from perturbative QCD
- Non-perturbative input required for the hadron-like part

$$f_i^{\gamma,\text{had}}(x,Q_0^2) = N_i x^{a_i} (1-x)^{b_i}$$

PDFs for resolved photons

Comparison of different photon PDF analysis

- Some differences between analyses, especially for gluon
 ⇒ Theoretical uncertainty for resolved processes
- CJKL used as a default in PYTHIA 8, others via LHAPDF5 but only for hard-process generation

ISR with resolved photons

- ISR probability based on DGLAP equations
- Add a term corresponding to $\gamma
 ightarrow {
 m q} \overline{
 m q}$ splitting

$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\rm s}}{2\pi} \frac{x' f_a^{\gamma}(x',Q^2)}{x f_b^{\gamma}(x,Q^2)} P_{a\rightarrow bc}(z) \,\mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\rm em}}{2\pi} \frac{e_b^2 P_{\gamma\rightarrow bc}(x)}{f_b^{\gamma}(x,Q^2)}$$

- Corresponds to finding the original photon during evolution
 ⇒ Parton originated from the point-like part of the PDF
 - No further ISR
 - No MPIs below the scale
 - No need for beam remnants

MPIs with resolved photons

MPI probability depends on p_{T0}

- Current parametrization $p_{T0}(\sqrt{s}) = p_{T0}^{ref}(\sqrt{s}/\sqrt{s_{ref}})^{\alpha}$ tuned to pp data
- New parametrization for γp
 - Data sensitive to MPIs
 - Wide range in $W_{\gamma p}$

Inclusive charged-particle production by H1

- E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < $W_{\gamma p}$ > $\,pprox$ 200 GeV
- Assume same α as in pp, vary $p_{\rm T0}^{\rm ref}$

[H1: Eur.Phys.J. C10 (1999) 363-372]

- Sensitive to MPIs $p_{\rm T} < 4~{\rm GeV}$
- Optimal with $p_{T0}^{ref} = 3.00 \text{ GeV}$

MPIs with resolved photons

Parametrization for $\gamma {\rm p}$

- $p_{\rm T0}$ values between $\gamma\gamma$ (using LEP data) and pp
- Relevant energies:
 - HERA: $W_{\gamma p} pprox$ 200 GeV
 - eRHIC: $W_{\gamma p} pprox$ 100 GeV

Number of MPIs in different colliders

- Non-diffractive events with resolved photons
- Less MPIs in ep than pp
 - Larger p_{T0}
 - Point-like PDF in PS

Dijet photoproduction in ep collisions at HERA

ZEUS dijet measurement

- $Q_{\gamma}^2 < 1.0 ~{
 m GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- $E_{\rm T}^{\rm jet1} > 14~{\rm GeV},$ $E_{\rm T}^{\rm jet2} > 11~{\rm GeV}$
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Different contributions

• Define $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}} e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}} e^{\eta^{\text{jet2}}}}{2y E_{\text{e}}}$

to discriminate direct and resolved processes

- 2000ZEUS $^{sqo}xp/1500$ Pvthia 8.226 resolved direct $17 < E_{\rm T}^{\rm jet1} < 25 {\rm ~GeV}$ 1000 500 $0 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.0 \\ 0.9 \\ 0.8$ atio to Pythia 0.1 0.8 0.9 1.0 x_{α}^{obs} [ZEUS: Eur.Phys.J. C23 (2002) 615-631]
- Corresponds to x of partons from γ in LO (=1 for direct)

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets [Eur.Phys.J. C23 (2002) 615-631]

- \cdot Simulations tend to overshoot the dijet data by \sim 10 %
- \cdot ~ 10 % uncertainty from photon PDFs for $x_{\gamma}^{\rm obs} <$ 0.75

High-mass dimuons in ultraperipheral Pb+Pb at the LHC

$Pb+Pb \rightarrow \mu^+ + \mu^- + Pb^* + Pb^*$

- Data well described by STARLIGHT MC
- ⇒ Confirms EPA for Pb+Pb at the LHC

- PYTHIA hard-sphere flux agrees with STARLIGHT
- Small difference at high-W from nuclear density (~ high-x_γ)