Photoproduction of diffractive dijets in PYthiA 8

DIS 2021

Ilkka Helenius

April 15th, 2021
In collaboration with
Christine O. Rasmussen
JYVÄSKYLÄN YLIOPISTO
UNIVERSITY OF JYVÄSKYLÄ

Motivation: Diffractive dijets at HERA

- H1 data and factorization-based NLO calculation in DIS (high Q2) in agreement
- NLO calculation overshoot the data in photoproduction (low Q2)
\Rightarrow Factorization broken in hard diffraction at low Q^{2} similarly as in pp

Outline

Outline

1. Event generation in PythiA 8
2. Photoproduction, direct and resolved processes
3. Dynamical rapidity gap survival model for hard diffraction
4. Comparison to HERA data
5. Predictions for EIC and UPCs at the LHC
6. Summary \& Outlook

PYthiA 8: A general-purpose Monte Carlo event generator

1. Hard scattering

- Convolution of LO partonic cross sections and PDFs

2. Parton showers

- Generate Initial and Final State Radiation (ISR \& FSR)

3. Multiparton interactions (MPIs)

- Use regularized QCD $2 \rightarrow 2$ cross sections

4. Beam remnants

- Minimal number of partons to conserve colour and flavour [Figure: S. Prestel]

5. Hadronization

- Lund string model with color reconnection

Event generation in photoproduction

Direct processes

- Photon initiator of the hard process (DIS-like)
- Convolute photon flux f_{γ} with proton PDFs f_{i}^{p} and $\mathrm{d} \hat{\sigma}$

$$
\mathrm{d} \sigma^{b p \rightarrow k l+x}=f_{\gamma}^{b}(x) \otimes f_{i}^{p}\left(x_{p}, \mu^{2}\right) \otimes \mathrm{d} \hat{\sigma}^{\gamma i \rightarrow k l}
$$

- Generate FSR and ISR for proton side

Resolved processes

- Convolute also with photon PDFs

$$
\mathrm{d} \sigma^{b p \rightarrow k l+x}=f_{\gamma}^{b}(x) \otimes f_{j}^{\gamma}\left(x_{\gamma}, \mu^{2}\right) \otimes f_{i}^{\mathrm{p}}\left(x_{p}, \mu^{2}\right) \otimes \mathrm{d} \sigma^{i j \rightarrow k l}
$$

- Sample x and Q^{2}, setup γp sub-system with $W_{\gamma p}$

- Evolve γ p as any hadronic collision (including MPIs)

Comparion to HERA photoproduction data

ZEUS dijet measurement

- $Q^{2}<1.0 \mathrm{GeV}^{2}$
- $134<W_{\gamma p}<277 \mathrm{GeV}$
- $E_{T}^{\text {jet1 }}>14 \mathrm{GeV}, E_{T}^{\text {jet2 }}>11 \mathrm{GeV}$
- $-1<\eta^{\text {jet } 1,2}<2.4$

Two contributions

- Momentum fraction of partons in photon

$$
x_{\gamma}^{\text {oton }}=\frac{E_{\mathrm{T}}^{\mathrm{jet} 1} \mathrm{e}^{\eta^{\mathrm{jet}+1}}+E_{\mathrm{T}}^{\mathrm{jet} 2} \mathrm{e}^{\eta^{\mathrm{jet} 2}}}{2 y E_{\mathrm{e}}} \approx x_{\gamma}
$$

- Sensitivity to process type

[ZEUS: Eur.Phys.J. C23 (2002) 615-631]
- At high- $x_{\gamma}^{\text {obs }}$ direct processes dominate

Hard diffraction in PYthiA 8

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Factorization of the diffractive cross section

- Direct: Pomeron flux and diffractive PDFs

$$
\mathrm{d} \sigma_{\text {direct }}^{\text {2jets }}=f_{\gamma}^{b}(x) \otimes \mathrm{d} \sigma^{\gamma j \rightarrow 2 \text { jets }} \otimes f_{j}^{\mathbb{P}}\left(z_{\mathbb{P}}, \mu^{2}\right) \otimes f_{\mathrm{p}}^{\mathrm{p}}\left(x_{\mathrm{p}}, t\right)
$$

- Resolved: photon PDFs

$$
\mathrm{d} \sigma_{\text {resolved }}^{2 j e t s}=f_{\gamma}^{b}(x) \otimes f_{i}^{\gamma}\left(x_{\gamma}, \mu^{2}\right) \otimes \mathrm{d} \sigma^{i j \rightarrow 2 j e t s} \otimes f_{j}^{\mathrm{P}}\left(z_{\mathrm{P}}, \mu^{2}\right) \otimes f_{\mathrm{p}}^{\mathrm{p}}\left(x_{\mathrm{P}}, t\right)
$$

Direct:

Resolved:

Hard diffraction in PYthiA 8

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

1. Generate diffractive events with dPDFs (PDF)

Hard diffraction in PYthiA 8

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

1. Generate diffractive events with dPDFs (PDF)
2. Reject events where MPIs in $\gamma \mathrm{p}$ system (MPI)

Resolved:

Hard diffraction in PYthiA 8

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

1. Generate diffractive events with dPDFs (PDF)
2. Reject events where MPIs in $\gamma \mathrm{p}$ system (MPI)
3. Evolve γ IP system, allow MPIs

Resolved:

Hard diffraction in PYthiA 8

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

1. Generate diffractive events with dPDFs (PDF)
2. Reject events where MPIs in $\gamma \mathrm{p}$ system (MPI)
3. Evolve γ IP system, allow MPIs

Implemented from Pythia 8.235 onwards
[I.H. and C.O. Rasmussen, EPJC 79 (2019) no.5, 413]
Same idea applied for pp collisions at the LHC

Direct:

Resolved:

Comparisons to HERA data

- PDF selection overshoots the data by 20-50 \%
- Impact of the MPI rejection increases with W
- Stronger suppression in H1 analysis due to looser cuts on $E_{T}^{\text {jets }}$ and $X_{\mathbb{P}} \Rightarrow$ More MPIs

Cuts	H1	ZEUS
$Q_{\max }^{2}\left[\mathrm{GeV}^{2}\right]$	0.01	1.0
$E_{T, \text { min }}^{\mathrm{jet}}[\mathrm{GeV}]$	5.0	7.5
$E_{T, \text { min }}^{\mathrm{jet2}}[\mathrm{GeV}]$	4.0	6.5
$x_{1 \mathbb{P}}^{\max }$	0.03	0.025

Pythia setup

- dPDFs from H1 fit B LO
- γ PDFs from CJKL
- $p_{\mathrm{T} 0}^{\text {ref }}=3.00 \mathrm{GeV} / \mathrm{c}$ (Tuned to inclusive charged particle data from γ p at HERA)

Comparisons to HERA data

- Stronger suppression at low- $x_{\gamma}^{\text {obs }}$ (more MPIs)
- ZEUS cuts select events at high- $x_{\gamma}^{\text {obs }}$ region
- Some theoretical uncertainty from γ PDFs, dPDFs and scale variation

Predictions for EIC

Repeat the H 1 analysis at EIC kinematics ($E_{\mathrm{e}}=18 \mathrm{GeV}, E_{\mathrm{p}}=275 \mathrm{GeV}$)

- Only up to $\sim 10 \%$ effects in the considered W range
- Noticeable suppression only at low x_{γ} where cross section small
\Rightarrow Available energy and kinematical cuts typically applied for diffraction push the kinematics to region where no room for MPIs

Diffractive dijets in UPCs

- Apply the dynamical rapidity gap survival model to UPCs in pp and pPb
- In pPb the photon flux from Pb dominates $\left(\propto Z^{2}\right)$, p neglected
Kinematics similar to HERA
- $E_{T}^{\text {jet1(2) }}>8(6) \mathrm{GeV},\left|\eta^{\text {jet1,2 }}\right|<4.4$
- $M_{\text {jets }}>14 \mathrm{GeV}, X_{\mathrm{IP}}<0.025$

Pythia setup

- Same PDFs as for HERA
- Vary MPI parameter:
$p_{\mathrm{T} 0}^{\text {ref }}=3.00 \mathrm{GeV}($ HERA $\gamma \mathrm{p})$
$p_{\mathrm{To}}^{\text {ref }}=2.28 \mathrm{GeV}($ LHC pp)

Predictions for diffractive dijets in UPC

$\mathrm{pPb} \sqrt{s}=5.0 \mathrm{TeV}$

$$
\mathrm{pp} \sqrt{s}=13 \mathrm{TeV}
$$

- Extended W range wrt. HERA, especially in pp (harder flux)
- Stronger suppression from MPIs than at HERA
\Rightarrow Ideal process to study factorization-breaking effects in hard diffraction

Summary \& Conclusions

Photoproduction in PYTHIA 8

- Full simulations of direct and resolved contributions
- Good description of different HERA data
- Can be applied also to ultra-peripheral collisions

Diffractive dijets in photoproduction

- Implemented dynamical rapidity gap survival model for γ p (and $\gamma \gamma$), originally introduced for pp
\Rightarrow Uniform framework to describe the observed factorization breaking for hard diffraction in pp and ep relying only on MPI description in PYTHIA
- Support from HERA data
- Only mild effects expected at EIC energies
- Pronounced suppression predicted in UPCs at the LHC

Backup slides

Motivation: Diffractive dijets in hadronic collisions

[CDF: PRL 84 (2000) 5043-5048]

- A significant suppression of diffractive dijets observed in $p+\bar{p}$
- Similar results also at the LHC
- Dijets in ultra-peripheral collisions at the LHC

PDFs for resolved photons

Comparison of different photon PDF analysis

- Some differences ${ }^{x}$ between analyses, especially for gluon
\Rightarrow Theoretical uncertainty for resolved processes
- CJKL used as a default in PYthiA 8, others via LHAPDF5 but only for hard-process generation

MPIs with resolved photons

Parametrization for γp

- P $_{\text {то }}$ values between $\gamma \gamma$ (using LEP data) and pp
- Relevant energies:
- HERA: $W_{\gamma p} \approx 200 \mathrm{GeV}$
- eRHIC: $W_{\gamma p} \approx 100 \mathrm{GeV}$

Number of MPIs in different

colliders

- Non-diffractive events with resolved photons
- Less MPIs in ep than pp
- Larger $P_{\text {To }}$

- Point-like PDF in PS

Charged particle p_{T} spectra in ep collisions at HERA

H1 measurement

- $E_{p}=820 \mathrm{GeV}, E_{\mathrm{e}}=27.5 \mathrm{GeV}$
- $\left\langle W_{\gamma p}\right\rangle \approx 200 \mathrm{GeV}$
- $Q_{\gamma}^{2}<0.01 \mathrm{GeV}^{2}$

Comparison to Pythia 8

- Resolved contribution dominates
- Good agreement with the data using $p_{\text {To }}^{\text {ref }}=3.00 \mathrm{GeV} / \mathrm{C}$
\Rightarrow MPI probability between pp and $\gamma \gamma$

Charged particle p_{T} spectra in ep collisions at HERA

H1 measurement

- $E_{p}=820 \mathrm{GeV}, E_{\mathrm{e}}=27.5 \mathrm{GeV}$
- $\left\langle W_{\gamma p}\right\rangle \approx 200 \mathrm{GeV}$
- $Q_{\gamma}^{2}<0.01 \mathrm{GeV}^{2}$

Comparison to Pythia 8

- Resolved contribution dominates
- Good agreement with the data using $p_{\mathrm{TO}}^{\text {ref }}=3.00 \mathrm{GeV} / \mathrm{C}$
\Rightarrow MPI probability between pp and $\gamma \gamma$

Charged particle p_{T} spectra in ep collisions at HERA

H1 measurement

- $E_{p}=820 \mathrm{GeV}, E_{\mathrm{e}}=27.5 \mathrm{GeV}$
- $\left\langle W_{\gamma p}\right\rangle \approx 200 \mathrm{GeV}$
- $Q_{\gamma}^{2}<0.01 \mathrm{GeV}^{2}$

Comparison to Pythia 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T 0}^{\text {ref }}=3.00 \mathrm{GeV} / \mathrm{C}$
\Rightarrow MPI probability between pp and $\gamma \gamma$

Charged-particle η dependence

[H1: Eur.Phys.J. C10 (1999) 363-372]

- Good agreement also for charged-particle η dependence
- Resolved contribution dominates the cross section

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets

- Simulations tend to overshoot the dijet data by ~10 \%
- $\sim 10 \%$ uncertainty from photon PDFs for $x_{\gamma}^{\text {obs }}<0.75$

Predictions for dijets in UPCs

Event selection similar to HERA

- anti- R_{T} with $R=0.4$
- $p_{T}^{\text {lead }}>8 \mathrm{GeV}, p_{T}^{\text {jets }}>6 \mathrm{GeV}$
- $\left|\eta^{\text {jets }}\right|<4.4, m_{\text {jets }}>14 \mathrm{GeV}$
- Event-level variables:

$$
\text { - } H_{T}=\Sigma_{i} p_{T i}, x_{A}=\frac{m_{\mathrm{jets}}}{\sqrt{5}} \mathrm{e}^{-y_{j \mathrm{jets}}}
$$

Results from Pythia 8

- Resolved dominant at high- x_{A}, direct at low- X_{A}
- Sensitive to nuclear PDFs
- Statistical uncertainty estimated at different luminosities

Hard diffraction in DIS

Diffractive dijets

- Virtual photon interacts with Pomeron from proton producing jets
- Signature: scattered proton or a rapidity gap between proton and Pomeron remnant

Factorized cross section for diffractive dijets

- DIS: $\mathrm{d} \sigma^{2 j e t s+X}=f_{i}^{\mathbb{P}}\left(z_{\mathbb{P}}, \mu^{2}\right) \otimes f_{\mathbb{P}}^{\mathrm{p}}\left(x_{\mathbb{P}}, t\right) \otimes \mathrm{d} \sigma^{i e \rightarrow 2 j e t s}$ where $f_{\mathbb{P}}^{\mathrm{p}}$ is Pomeron flux and $f_{j}^{\mathbb{P}}$ diffractive PDF (dPDF)
- Factorization verifed by H1 and ZEUS at HERA

Theoretical uncertainties

Largest uncertainties arise from

- LO ME (vary factorization and renormalization scales)
- diffractive PDFs (H1fitB, ZEUS-SJ and GKG18A)

ZEUS 2008:

- Scale uncertainty aroựnqq"20 \%

ZEUS 2008:

Theoretical uncertainties

Largest uncertainties arise from

- LO ME (vary factorization and renormalization scales)
- diffractive PDFs (H1fitB, ZEUS-SJ and GKG18A)

ZEUS 2008:

ZEUS 2008:

- Scale uncertainty aroưniqu"20 \%
- Better agreement for the shape of $z_{\mathbb{P}}^{0 b s}$ with ZEUS-SJ

$z_{\mathbb{P}}^{\mathrm{obs}}$ distributions

H1 2007:

ZEUS 2008:

- MPI suppression not dependent on $z_{\mathbb{P}}^{\text {obs }}$
- Better agreement with H1 data after MPI rejection
- Shape a bit off in both cases, observable sensitive to
- dPDFs, Jet reconstruction

Diffractive dijets in pp

- Dynamical rapidity gap survival model in PYTHIA 8 (DG) provide a good description of the measurement (Survival probability < 10\%)

Ultra-peripheral collisions (UPCs) (main70.cc)

Photon flux from protons

- Take the proton form factor into account

$$
f_{\gamma}^{\mathrm{p}}(x)=\frac{\alpha_{\mathrm{em}}}{2 \pi} \frac{\left(1+(1-x)^{2}\right)}{x}\left[\log (A)-\frac{11}{6}+\frac{3}{A}-\frac{3}{2 A^{2}}+\frac{1}{3 A^{3}}\right]
$$

where $A=1+Q_{0}^{2} / Q_{\text {min }}^{2}$ and $Q_{0}^{2}=0.71 \mathrm{GeV}^{2}$

- The form factor suppress contribution from high- $Q^{2} \Rightarrow$ photoproduction regime

UPCs with heavy ions

- Define photon flux in impact-parameter space to reject events where colliding nuclei overlap

$$
f_{\gamma}^{A}(x)=\frac{2 \alpha_{\mathrm{EM}} Z^{2}}{x \pi}\left[\xi K_{1}(\xi) K_{0}(\xi)-\frac{\xi^{2}}{2}\left(K_{1}^{2}(\xi)-K_{0}^{2}(\xi)\right)\right]
$$

where Z charge, $\xi=b_{\min } x m$

Soft QCD photoproduction

Soft QCD process implemented for photoproduction

- Based on Schuler and Sjöstrand model in Pythia 6
- Vector meson dominance (VMD) with ρ, ω, ϕ and J / Ψ mesons for
- Soft diffraction (high- and low-mass)
- Elastic scattering
- Non-diffractive from MPI machinery
- Total Cross section parametrized as

$$
\sigma_{\text {tot }}^{A B}(s)=X^{A B} s^{\epsilon}+Y^{A B} s^{-\eta}
$$

where $\epsilon=0.0808$ and $\eta=0.4525$ are universal, $X^{A B}$ and $Y^{A B}$ process-dependent

Elastic ρ production at

$$
\left\langle W_{\gamma p}\right\rangle=70 \mathrm{GeV}
$$

[Data from ZEUS: Z.Phys. C69 (1995) 39-54]

