Photoproduction of diffractive dijets in PYTHIA 8

DIS 2021

Ilkka Helenius April 15th, 2021

In collaboration with Christine O. Rasmussen

Motivation: Diffractive dijets at HERA

[H1: JHEP 1505 (2015) 056]

- H1 data and factorization-based NLO calculation in DIS (high Q²) in agreement
- NLO calculation overshoot the data in photoproduction (low Q^2)
 - \Rightarrow Factorization broken in hard diffraction at low Q^2 similarly as in pp

Outline

Outline

- 1. Event generation in PYTHIA 8
- 2. Photoproduction, direct and resolved processes
- 3. Dynamical rapidity gap survival model for hard diffraction
- 4. Comparison to HERA data
- 5. Predictions for EIC and UPCs at the LHC
- 6. Summary & Outlook

Рутніа 8: A general-purpose Monte Carlo event generator

1. Hard scattering

- Convolution of LO partonic cross sections and PDFs
- 2. Parton showers
 - Generate Initial and Final State Radiation (ISR & FSR)
- 3. Multiparton interactions (MPIs)
 - Use regularized QCD 2 ightarrow 2 cross sections
- 4. Beam remnants
 - Minimal number of partons to conserve colour and flavour [Figure: S. Prestel]
- 5. Hadronization
 - Lund string model with color reconnection

Event generation in photoproduction

Direct processes

- Photon initiator of the hard process (DIS-like)
- Convolute photon flux f_{γ} with proton PDFs $f_i^{\rm p}$ and $d\hat{\sigma}$

$$\mathrm{d}\sigma^{b\mathrm{p}\to kl+X} = f^b_{\gamma}(x) \,\otimes\, f^{\mathrm{p}}_i(x_{\mathrm{p}},\mu^2) \,\otimes\, \mathrm{d}\hat{\sigma}^{\gamma i\to k}$$

Generate FSR and ISR for proton side

Resolved processes

• Convolute also with photon PDFs

$$\mathrm{d}\sigma^{b\mathrm{p}\to kl+X} = f^b_\gamma(\mathbf{x})\otimes f^\gamma_j(\mathbf{x}_\gamma,\mu^2)\otimes f^\mathrm{p}_i(\mathbf{x}_\mathrm{p},\mu^2)\otimes \mathrm{d}\sigma^{ij\to k}$$

- Sample x and Q^2 , setup γp sub-system with $W_{\gamma p}$
- Evolve γp as any hadronic collision (including MPIs)

Comparion to HERA photoproduction data

ZEUS dijet measurement

- $Q^2 < 1.0 \text{ GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- $E_{\rm T}^{\rm jet1}$ > 14 GeV, $E_{\rm T}^{\rm jet2}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

- Momentum fraction of partons in photon $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}}e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}}e^{\eta^{\text{jet2}}}}{2yE_{\text{e}}} \approx x_{\gamma}$
- Sensitivity to process type
- At high- $x_{\gamma}^{\rm obs}$ direct processes dominate

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Factorization of the diffractive cross section

- Direct: Pomeron flux and diffractive PDFs $d\sigma_{direct}^{2jets} = f_{\gamma}^{b}(\mathbf{x}) \otimes d\sigma^{\gamma j \to 2jets} \otimes f_{j}^{P}(z_{\mathbb{P}}, \mu^{2}) \otimes f_{\mathbb{P}}^{P}(\mathbf{x}_{\mathbb{P}}, t)$
- Resolved: photon PDFs

$$\mathrm{d}\sigma_{\mathrm{resolved}}^{2j\mathrm{ets}} = f_{\gamma}^{b}(\mathbf{X}) \otimes f_{i}^{\gamma}(\mathbf{X}_{\gamma}, \mu^{2}) \otimes \mathrm{d}\sigma^{ij \to 2j\mathrm{ets}} \otimes f_{j}^{\mathrm{P}}(\mathbf{Z}_{\mathrm{P}}, \mu^{2}) \otimes f_{\mathrm{P}}^{\mathrm{P}}(\mathbf{X}_{\mathrm{P}}, t)$$

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

1. Generate diffractive events with dPDFs (PDF)

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

- 1. Generate diffractive events with dPDFs (PDF)
- 2. Reject events where MPIs in γp system (MPI)

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

- 1. Generate diffractive events with dPDFs (PDF)
- 2. Reject events where MPIs in γp system (MPI)
- 3. Evolve γ IP system, allow MPIs

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

- 1. Generate diffractive events with dPDFs (PDF)
- 2. Reject events where MPIs in γp system (MPI)
- 3. Evolve γ IP system, allow MPIs

Implemented from Pythia 8.235 onwards

[I.H. and C.O. Rasmussen, EPJC 79 (2019) no.5, 413] Same idea applied for pp collisions at the LHC [C.O. Rasmussen and T. Sjöstrand, JHEP 1602 (2016) 142]

Comparisons to HERA data

- PDF selection overshoots the data by 20–50 %
- Impact of the MPI rejection increases with W
- Stronger suppression in H1 analysis due to looser cuts on E_T^{jets} and $x_{\mathbb{P}} \Rightarrow \text{More MPIs}$

Cuts	Η1	ZEUS
$Q_{\rm max}^2$ [GeV ²]	0.01	1.0
E ^{jet1} [GeV]	5.0	7.5
E ^{jét2} T,min [GeV]	4.0	6.5
x ^{max}	0.03	0.025

PYTHIA setup

- dPDFs from H1 fit B LO
- + $\gamma {\rm PDFs}$ from CJKL
- p^{ref}_{T0} = 3.00 GeV/c (Tuned to inclusive charged particle data from γp at HERA)

Comparisons to HERA data

- Stronger suppression at low- $x_{\gamma}^{\rm obs}$ (more MPIs)
- ZEUS cuts select events at high- $x_{\gamma}^{
 m obs}$ region
- Some theoretical uncertainty from $\gamma {\rm PDFs},$ dPDFs and scale variation

Cuts	Η1	ZEUS
$Q_{\rm max}^2$ [GeV ²]	0.01	1.0
E ^{jet1} [GeV]	5.0	7.5
E ^{jét2} T,min [GeV]	4.0	6.5
$x_{\rm IP}^{\rm max}$	0.03	0.025

χ^2 analysis	PDF	MPI		
H1	5.2	1.4		
ZEUS	9.6	5.1		
H1 & ZEUS	7.6	3.4		
(with all data points)				

Predictions for EIC

Repeat the H1 analysis at EIC kinematics ($E_e = 18$ GeV, $E_p = 275$ GeV)

- $\cdot\,$ Only up to \sim 10% effects in the considered W range
- Noticeable suppression only at low x_γ where cross section small
- ⇒ Available energy and kinematical cuts typically applied for diffraction push the kinematics to region where no room for MPIs

Diffractive dijets in UPCs

- Apply the dynamical rapidity gap survival model to UPCs in pp and pPb
- In pPb the photon flux from Pb dominates ($\propto Z^2$), p neglected

Kinematics similar to HERA

- $E_{
 m T}^{
 m jet1(2)} > 8$ (6) GeV, $|\eta^{
 m jet1,2}| < 4.4$
- $M_{\rm jets} >$ 14 GeV, $x_{\rm IP} < 0.025$

PYTHIA setup

- Same PDFs as for HERA
- Vary MPI parameter: $p_{T0}^{ref} = 3.00 \text{ GeV} (\text{HERA } \gamma \text{p})$ $p_{T0}^{ref} = 2.28 \text{ GeV} (\text{LHC pp})$

Predictions for diffractive dijets in UPC

- Extended W range wrt. HERA, especially in pp (harder flux)
- Stronger suppression from MPIs than at HERA
 - \Rightarrow Ideal process to study factorization-breaking effects in hard diffraction

Summary & Conclusions

Photoproduction in PYTHIA 8

- Full simulations of direct and resolved contributions
- Good description of different HERA data
- · Can be applied also to ultra-peripheral collisions

Diffractive dijets in photoproduction

- Implemented dynamical rapidity gap survival model for γp (and $\gamma \gamma$), originally introduced for pp
- ⇒ Uniform framework to describe the observed factorization breaking for hard diffraction in pp and ep relying only on MPI description in PYTHIA
- Support from HERA data
- Only mild effects expected at EIC energies
- Pronounced suppression predicted in UPCs at the LHC

Backup slides

Motivation: Diffractive dijets in hadronic collisions

- A significant suppression of diffractive dijets observed in p+p
- Similar results also at the LHC

• Dijets in ultra-peripheral collisions at the LHC

PDFs for resolved photons

Comparison of different photon PDF analysis

- Some differences^x between analyses, especially for gluon
 - \Rightarrow Theoretical uncertainty for resolved processes
- CJKL used as a default in PYTHIA 8, others via LHAPDF5 but only for hard-process generation

MPIs with resolved photons

Parametrization for $\gamma {\rm p}$

- $p_{\rm T0}$ values between $\gamma\gamma$ (using LEP data) and pp
- Relevant energies:
 - HERA: $W_{\gamma p} pprox 200 \; {
 m GeV}$
 - eRHIC: $W_{\gamma \mathrm{p}} pprox$ 100 GeV

Number of MPIs in different colliders

- Non-diffractive events with resolved photons
- Less MPIs in ep than pp
 - Larger p_{T0}
 - Point-like PDF in PS

Charged particle p_T spectra in ep collisions at HERA

H1 measurement

- \cdot E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < $W_{\gamma \mathrm{p}}$ > $\,pprox$ 200 GeV
- $Q_{\gamma}^2 < 0.01 \, {
 m GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Charged particle p_T spectra in ep collisions at HERA

H1 measurement

- \cdot E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < W $_{\gamma
 m p}$ > $\,pprox$ 200 GeV
- $Q_\gamma^2 < 0.01 \ {
 m GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Charged particle p_T spectra in ep collisions at HERA

H1 measurement

- \cdot E_p = 820 GeV, E_e = 27.5 GeV
- \cdot < $W_{\gamma p}$ > $\,pprox$ 200 GeV
- $Q_{\gamma}^2 < 0.01 \, {
 m GeV}^2$

Comparison to PYTHIA 8

- Resolved contribution dominates
- Good agreement with the data using $p_{T0}^{ref} = 3.00 \text{ GeV/c}$
- \Rightarrow MPI probability between pp and $\gamma\gamma$

Charged-particle η dependence

[H1: Eur.Phys.J. C10 (1999) 363-372]

- Good agreement also for charged-particle η dependence
- · Resolved contribution dominates the cross section

Dijet in ep collisions at HERA

Pseudorapidity dependence of dijets

[Eur.Phys.J. C23 (2002) 615-631]

- Simulations tend to overshoot the dijet data by \sim 10 %
- \cdot ~ 10 % uncertainty from photon PDFs for $x_{\gamma}^{\rm obs} < 0.75$

Predictions for dijets in UPCs

Event selection similar to HERA

- anti- $k_{\rm T}$ with R = 0.4
- + $p_{\rm T}^{\rm lead}$ > 8 GeV, $p_{\rm T}^{\rm jets}$ > 6 GeV
- + $|\eta^{
 m jets}|$ < 4.4, $m_{
 m jets}$ > 14 GeV
- Event-level variables:

•
$$H_{\rm T} = \Sigma_i p_{\rm Ti}$$
, $x_{\rm A} = \frac{m_{\rm jets}}{\sqrt{s}} {\rm e}^{-y_{\rm jets}}$

Results from Pythia 8

- Resolved dominant at high-x_A, direct at low-x_A
- Sensitive to nuclear PDFs
- Statistical uncertainty estimated at different luminosities

Hard diffraction in DIS

Diffractive dijets

- Virtual photon interacts with Pomeron from proton producing jets
- Signature: scattered proton or a rapidity gap between proton and Pomeron remnant

Factorized cross section for diffractive dijets

- DIS: $d\sigma^{2jets+X} = f_i^{IP}(z_{IP}, \mu^2) \otimes f_{IP}^{P}(x_{IP}, t) \otimes d\sigma^{ie \to 2jets}$ where f_{IP}^{P} is Pomeron flux and f_i^{IP} diffractive PDF (dPDF)
- Factorization verifed by H1 and ZEUS at HERA

Theoretical uncertainties

Largest uncertainties arise from

- LO ME (vary factorization and renormalization scales)
- diffractive PDFs (H1fitB, ZEUS-SJ and GKG18A)

ZEUS 2008:

ZEUS 2008:

Theoretical uncertainties

Largest uncertainties arise from

- LO ME (vary factorization and renormalization scales)
- diffractive PDFs (H1fitB, ZEUS-SJ and GKG18A)

ZEUS 2008:

ZEUS 2008:

Better agreement for the shape of $z_{\rm IP}^{\rm obs}$ with ZEUS-SJ

z^{obs} distributions

H1 2007:

ZEUS 2008:

- MPI suppression not dependent on $Z_{\rm IP}^{\rm obs}$
- Better agreement with H1 data after MPI rejection
- Shape a bit off in both cases, observable sensitive to
 - dPDFs, Jet reconstruction

Diffractive dijets in pp

description of the measurement (Survival probability < 10%)

Ultra-peripheral collisions (UPCs) (main70.cc)

Photon flux from protons

• Take the proton form factor into account

$$f_{\gamma}^{p}(x) = \frac{\alpha_{em}}{2\pi} \frac{(1 + (1 - x)^{2})}{x} \left[\log(A) - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^{2}} + \frac{1}{3A^{3}} \right]$$

where $A=1+{\it Q}_0^2/{\it Q}_{min}^2$ and ${\it Q}_0^2=0.71~{\rm GeV^2}$

• The form factor suppress contribution from high- $Q^2 \Rightarrow$ photoproduction regime

UPCs with heavy ions

• Define photon flux in impact-parameter space to reject events where colliding nuclei overlap

$$f_{\gamma}^{A}(x) = \frac{2\alpha_{\rm EM}Z^{2}}{x\pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right]$$

where Z charge, $\xi = b_{\min} x m$

Soft QCD photoproduction

Soft QCD process implemented for photoproduction

- Based on Schuler and Sjöstrand model in PYTHIA
 6
- Vector meson dominance (VMD) with ρ , ω , ϕ and J/Ψ mesons for
 - Soft diffraction (high- and low-mass)
 - Elastic scattering
- Non-diffractive from MPI machinery
- Total Cross section parametrized as

 $\sigma_{\rm tot}^{AB}(s) = X^{AB} s^{\epsilon} + Y^{AB} s^{-\eta}$

where $\epsilon=$ 0.0808 and $\eta=$ 0.4525 are universal, $X^{\rm AB}$ and $Y^{\rm AB}$ process-dependent

Elastic ho production at $\langle W_{\gamma p}
angle = 70 \; {\rm GeV}$

Z.Phys. C69 (1995) 39-54]