Photon-induced processes in Pythia 8

ATLAS WORKSHOP FOR PHOTON-INDUCED PROCESSES

Outline

Pythia 8: A general purpose Monte-Carlo event generator

• A new manual for 8.3 release arXiv:2203.11601 [hep-ph]

Outline

- 1. Photoproduction
- 2. Photon-induced processes in p+p
- 3. Ultraperipheral heavy-ion collisions
- 4. Diffractive photoproduction
- 5. Summary & Outlook

[figure by P. Skands]

Photoproduction

Events in e+p classified in terms of photon virtuality Q^2

- Large *Q*²: Deep inelastic scattering
- Small Q^2 : Photoproduction \Rightarrow Factorize photon flux

Direct processes

• Convolute photon flux f_{γ} with proton PDFs f_i^p and $d\hat{\sigma}$ $d\sigma^{bp \to kl+X} = f_{\gamma}^b(x) \otimes f_i^p(x_p, \mu^2) \otimes d\hat{\sigma}^{\gamma i \to kl}$

Resolved processes

• Can fluctuate into a hadronic state: photon PDFs

$$\mathrm{d}\sigma^{b\mathrm{p}\to kl+X} = f^b_\gamma(x) \otimes f^\gamma_j(x_\gamma,\mu^2) \otimes f^\mathrm{p}_i(x_\mathrm{p},\mu^2) \otimes \mathrm{d}\sigma^{ij\to kl}$$

- Evolve γp as any hadronic collision (including MPIs)

Comparison to HERA dijet photoproduction data

ZEUS dijet measurement

- $Q^2 < 1.0 \text{ GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- $E_{\rm T}^{\rm jet1}$ > 14 GeV, $E_{\rm T}^{\rm jet2}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

- Momentum fraction of partons in photon $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}}e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}}e^{\eta^{\text{jet2}}}}{2yE_{\text{e}}} \approx x_{\gamma}$
- Sensitivity to process type
- At high- $x_{\gamma}^{\rm obs}$ direct processes dominate

Comparison to HERA dijet photoproduction data

ZEUS dijet measurement

- $Q^2 < 1.0 \text{ GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- + $E_{\mathrm{T}}^{\mathrm{jet1}}$ > 14 GeV, $E_{\mathrm{T}}^{\mathrm{jet2}}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

- Momentum fraction of partons in photon $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}} e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}} e^{\eta^{\text{jet2}}}}{2yE_{\text{e}}} \approx x_{\gamma}$
- Sensitivity to process type
- At high- $x_{\gamma}^{\rm obs}$ direct processes dominate

Comparison to HERA dijet photoproduction data

ZEUS dijet measurement

- $Q^2 < 1.0 \text{ GeV}^2$
- 134 $< W_{\gamma \mathrm{p}} <$ 277 GeV
- + $E_{\rm T}^{\rm jet1}$ > 14 GeV, $E_{\rm T}^{\rm jet2}$ > 11 GeV
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

- Momentum fraction of partons in photon $x_{\gamma}^{\text{obs}} = \frac{E_{\text{T}}^{\text{jet1}}e^{\eta^{\text{jet1}}} + E_{\text{T}}^{\text{jet2}}e^{\eta^{\text{jet2}}}}{2yE_{\text{e}}} \approx x_{\gamma}$
- Sensitivity to process type
- At high- $x_{\gamma}^{\rm obs}$ direct processes dominate

Comparison to recent ZEUS data for charged hadrons

[ZEUS: 2106.12377 [hep-ex]]

4

Multiplicity distributions

- Multiplicity distributions sensitive to MPIs with resolved photons
- ZEUS data support for MPIs but with slightly larger p_{T0}^{ref} than in pp \Rightarrow less MPIs

$p_{\rm T}$ spectra for $N_{\rm ch} > 20$

- Similar agremeent as above
- Useful constraints for MPIs in γp system
- Goog agreement also in $c_1{2}$

[Rivet Analysis in preparation]

Equivalent photon approximation

Implemented photon fluxes

• In case of a point-like lepton we have

$$f_{\gamma}^{l}(x,Q^{2}) = \frac{\alpha_{\rm em}}{2\pi} \frac{(1+(1-x)^{2})}{x} \frac{1}{Q^{2}}$$

For protons need to account the form factor

$$f_{\gamma}^{p}(x,Q^{2}) = \frac{\alpha_{\text{em}}}{2\pi} \frac{(1+(1-x)^{2})}{x} \frac{1}{Q^{2}} \frac{1}{(1+Q^{2}/Q_{0}^{2})^{4}}$$

where $Q_0^2 = 0.71 \text{ GeV}^2$ (Drees-Zeppenfeld) \Rightarrow Large Q^2 heavily suppressed

• With heavy nuclei use *b*-integrated point-like-charge flux

$$f_{\gamma}^{A}(x) = \frac{2\alpha_{\rm EM}Z^{2}}{x \pi} \left[\xi \, K_{1}(\xi) K_{0}(\xi) - \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right]$$

where $\xi = b_{\min} x m$ where b_{\min} reject nuclear overlap, $Q^2 \ll 1 \text{ GeV}^2$ \Rightarrow Can apply photoproduction framework with all these beams!

$\gamma\gamma ightarrow\mu^+\mu^-$ in proton-proton collisions

Elastic-elastic contribution

- Photons have small $k_{\rm T}$ proportional to Q^2
- Muons almost back-to-back (Aco pprox 0)
- Small effect from FSR

Clean process to calibrate flux

• Reasonable agreement with ATLAS data using EPA, DZ can be improved

[ATLAS: PLB 777 (2018) 303-323]

$\gamma\gamma ightarrow \mu^+\mu^-$ in proton-proton collisions

Single-dissociative contribution

- Other γ from elastic flux, other as a part of DGLAP evolved proton PDFs
- Dissociative side will get primordial- $k_{\rm T}$ sampled from gaussian with width $\mathcal{O}({\rm GeV})$
- Also QCD ISR generated, significant p_T

• Cuts on $p_{\rm T}^{ll}$ suppress events with ISR

Double dissociative

- Both photons from PDFs with primordial-k_T and ISR
- ⇒ Large acoplanarity

Ultra-peripheral heavy-ion collisions

 Multiplicities well reproduced with γp

High multiplicities missed with γp
 ⇒ Multi-nucleon interactions

Dijets in ultra-peripheral heavy-ion collisions

- Novel constraints for nuclear PDFs, x_A to estimate probed nuclear x
- Pythia setup with nucleon target only
 ⇒ Not a realistic background for jet reconstruction
- Good agreement out of the box when accounting both direct and resolved

9

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Factorization of the diffractive cross section

• Direct: Pomeron flux and diffractive PDFs (dPDFs)

 $\mathrm{d}\sigma_{\mathrm{direct}}^{2j\mathrm{ets}} \!=\! f_{\gamma}^{b}(\mathbf{X}) \otimes \mathrm{d}\sigma^{\gamma j \rightarrow 2j\mathrm{ets}} \otimes f_{j}^{\mathbb{P}}(\mathbf{Z}_{\mathbb{P}}, \mu^{2}) \otimes f_{\mathbb{P}}^{p}(\mathbf{X}_{\mathbb{P}}, t)$

• Resolved: photon PDFs

$$\mathrm{d}\sigma_{\mathrm{resolved}}^{2j\mathrm{ets}} = f_{\gamma}^{b}(\mathbf{X}) \otimes f_{i}^{\gamma}(\mathbf{X}_{\gamma}, \mu^{2}) \otimes \mathrm{d}\sigma^{ij \to 2j\mathrm{ets}} \otimes f_{j}^{\mathrm{P}}(\mathbf{Z}_{\mathrm{P}}, \mu^{2}) \otimes f_{\mathrm{P}}^{\mathrm{P}}(\mathbf{X}_{\mathrm{P}}, t)$$

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

1. Generate diffractive events with dPDFs (PDF)

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

- 1. Generate diffractive events with dPDFs (PDF)
- 2. Reject events where MPIs in γp system (MPI)

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

- 1. Generate diffractive events with dPDFs (PDF)
- 2. Reject events where MPIs in γp system (MPI)
- 3. Evolve γ IP system, allow MPIs

Hard diffraction in photoproduction

- Process with a hard scale, desribed with a colour-neutral Pomeron (IP) exchange
- Experimentally identified from rapidity gap

Dynamical rapidity gap survival model

- 1. Generate diffractive events with dPDFs (PDF)
- 2. Reject events where MPIs in γp system (MPI)
- 3. Evolve γ IP system, allow MPIs

Implemented from Pythia 8.235 onwards

[I.H. and C.O. Rasmussen, EPJC 79 (2019) no.5, 413] Same idea applied for pp collisions at the LHC [C.O. Rasmussen and T. Sjöstrand, JHEP 1602 (2016) 142]

Comparisons to HERA data

- PDF selection overshoots the data by 20–50 %
- Impact of the MPI rejection increases with W
- Stronger suppression in H1 analysis due to looser cuts on E_T^{jets} and $x_{\mathbb{P}} \Rightarrow$ More MPIs

Cuts	Η1	ZEUS
$Q_{\rm max}^2$ [GeV ²]	0.01	1.0
E ^{jet1} E _{T.min} [GeV]	5.0	7.5
E ^{jét2} T,min [GeV]	4.0	6.5
x ^{max}	0.03	0.025

PYTHIA setup

- dPDFs from H1 fit B LO
- + $\gamma {\rm PDFs}$ from CJKL
- p^{ref}_{T0} = 3.00 GeV/c (Tuned to inclusive charged particle data from γp at HERA)

Predictions for diffractive dijets in UPC

- Extended W range wrt. HERA, especially in pp (harder flux)
- Stronger suppression from MPIs than at HERA
 - \Rightarrow Ideal process to study factorization-breaking effects in hard diffraction

Summary & Outlook

Photon-induced processes in Pythia 8.3

- Photoproduction framework tested
 against HERA data
- Can be applied to purely hadronic collisions with appropriate fluxes
 - Fluxes in place for leptons, protons and heavy nuclei
 - Possibility to feed in externally provided flux

Outlook

 Subsequent resolved-photon nucleon interactions for γ+A (Angantyr model)

[figure by P. Skands]

Backup slides

Рутні Collaboration

- Christian Bierlich
- Nishita Desai
- Leif Gellersen
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Stefan Prestel
- Christian Preuss
- Torbiörn Siöstrand
- Peter Skands
- Marius Utheim
- Rob Verheven (University College London)

(Lund University) (TIFR. Mumbai) (Lund University) (University of Jvväskvlä) (University of Cincinnati) (Lund University) (Fermilab) (Lund University) (ETH Zurich) (Lund University) (Monash University) (University of Jyväskylä)

[Pythia meeting in Monash 2019]

Рутні Collaboration

- Christian Bierlich
- Nishita Desai
- Leif Gellersen
- Ilkka Helenius
- Philip Ilten
- Leif Lönnblad
- Stephen Mrenna
- Stefan Prestel
- Christian Preuss
- Torbiörn Siöstrand
- Peter Skands
- (University of Jyväskylä) Marius Utheim
- Rob Verheven (University College London)

(Lund University) (TIFR. Mumbai) (Lund University) (University of Jvväskvlä) (University of Cincinnati) (Lund University) (Fermilab) (Lund University) (ETH Zurich) (Lund University) (Monash University)

[Pythia meeting in Monash 2019]

- Spokesperson
- Codemaster
- Webmaster

https://pythia.org authors@pythia.org

Event generation in DIS with Рутнія 8

Hard scattering

• Convolution between PDFs and matrix element (ME) for partonic scattering

Parton shower

- Final state radiation (FSR)
- Initial state radiation (ISR) for hadron
- QED emissions from leptons (omitted)

Hadronization

- String hadronization with colour reconnections
- Decays to stable hadrons

DIS with Pythia

Alternative shower model dipoleRecoil

[B. Cabouat and T. Sjöstrand, EPJC 78 (2018 no.3, 226)]

- No PS recoil for the scattered lepton
- Reasonable description of single-particle properties, such as transverse energy flow
- Results based on tune with the default global-recoil shower

Completely new shower DIRE

[S. Höche, S. Prestel, EPJC 75 (2015) no.9, 461]

- Correct soft-gluon interference at lowest order
- Inclusive NLO corrections to collinear splittings
- Good agreement with HERA data e.g. for thurst T

DGLAP equation for photons

- Additional term due to $\gamma
ightarrow {
m q} \overline{
m q}$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\text{em}}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_{\text{s}}(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1 - x)^2)$ for quarks, 0 for gluons (LO)

• Resulting PDFs has point-like (or anomalous) and hadron-like components

$$f_i^{\gamma}(x,Q^2) = f_i^{\gamma,\mathsf{pl}}(x,Q^2) + f_i^{\gamma,\mathsf{had}}(x,Q^2)$$

• $f_i^{\gamma, pl}$: Calculable from perturbative QCD

• $f_i^{\gamma,had}$: Requires non-perturbative input fixed in a global analysis

ISR probability based on DGLAP evolution

• Add a term corresponding to $\gamma \rightarrow q\overline{q}$ to (conditional) ISR probability

$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\rm s}}{2\pi} \frac{x' f_a^{\gamma}(x',Q^2)}{x f_b^{\gamma}(x,Q^2)} P_{a\rightarrow bc}(z) \,\mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\rm em}}{2\pi} \frac{e_b^2 P_{\gamma\rightarrow bc}(x)}{f_b^{\gamma}(x,Q^2)}$$

- · Corresponds to ending up to the beam photon during evolution
 - \Rightarrow Parton originated from the point-like part of the PDFs
 - No further ISR or MPIs below the scale of the splitting
 - No need for beam remnants

Comparisons to HERA data

- Stronger suppression at low- $x_{\gamma}^{\rm obs}$ (more MPIs)
- ZEUS cuts select events at high- $x_{\gamma}^{
 m obs}$ region
- Some theoretical uncertainty from $\gamma {\rm PDFs},$ dPDFs and scale variation

Cuts	Η1	ZEUS
$Q_{\rm max}^2$ [GeV ²]	0.01	1.0
E ^{jet1} [GeV]	5.0	7.5
E ^{jét2} T,min [GeV]	4.0	6.5
$x_{\rm IP}^{\rm max}$	0.03	0.025

χ^2 analysis	PDF	MPI
H1	5.2	1.4
ZEUS	9.6	5.1
H1 & ZEUS	7.6	3.4
(with all data	points)	

Predictions for EIC

Repeat the H1 analysis at EIC kinematics ($E_e = 18$ GeV, $E_p = 275$ GeV)

- $\cdot\,$ Only up to \sim 10% effects in the considered W range
- \cdot Noticeable suppression only at low x_γ where cross section small
- ⇒ Available energy and kinematical cuts for diffraction push the kinematics to region where only little room for MPIs ($E_T^{\text{jet1}} > 5.0 \text{ GeV}, E_T^{\text{jet2}} > 4.0 \text{ GeV}$)

Intermediate Q² region

Solid theory for $Q^2 = 0$ and at high Q^2 \Rightarrow What happens in between? Pythia 6 (inspired) model (\neq Pythia 8)

 Select suitable scales and suppress contributions by hand

$$\sigma_{\text{tot}}^{\gamma^* p} = \tilde{\sigma}_{\text{DIS}}^{\gamma^* p} \exp\left[-\frac{\tilde{\sigma}_{\text{Dir}}^{\gamma^* p}}{\tilde{\sigma}_{\text{DIS}}^{\gamma^* p}}\right] + \tilde{\sigma}_{\text{Dir}}^{\gamma^* p} + \tilde{\sigma}_{\text{Res}}^{\gamma^* p}$$
where

Intermediate Q² region

Solid theory for $Q^2 = 0$ and at high Q^2 \Rightarrow What happens in between? Pythia 6 (inspired) model (\neq Pythia 8)

 Select suitable scales and suppress contributions by hand

$$\sigma_{\text{tot}}^{\gamma^* p} = \tilde{\sigma}_{\text{DIS}}^{\gamma^* p} \exp\left[-\frac{\tilde{\sigma}_{\text{Dir}}^{\gamma^* p}}{\tilde{\sigma}_{\text{DIS}}^{\gamma^* p}}\right] + \tilde{\sigma}_{\text{Dir}}^{\gamma^* p} + \tilde{\sigma}_{\text{Res}}^{\gamma^* p}$$
where

Intermediate Q² region

Solid theory for $Q^2 = 0$ and at high Q^2 \Rightarrow What happens in between? Pythia 6 (inspired) model (\neq Pythia 8)

 Select suitable scales and suppress contributions by hand

$$\sigma_{\text{tot}}^{\gamma^* p} = \tilde{\sigma}_{\text{DIS}}^{\gamma^* p} \exp\left[-\frac{\tilde{\sigma}_{\text{Dir}}^{\gamma^* p}}{\tilde{\sigma}_{\text{DIS}}^{\gamma^* p}}\right] + \tilde{\sigma}_{\text{Dir}}^{\gamma^* p} + \tilde{\sigma}_{\text{Res}}^{\gamma^* p}$$
where

