Thermodynamical String Fragmentation

with Torbjörn Sjöstrand - arXiv:1610.09818

Nadine Fischer - November 24th, 2016
Monash University \& Lund University

Motivation

p_{\perp} distributions (ratio plots)

$\mathrm{p}, \overline{\mathrm{p}} p_{\perp}$ at $7 \mathrm{TeV},|y|<0.5$, ALICE

Motivation

p_{\perp} distributions (ratio plots)
Charged hadron p_{\perp} at $7 \mathrm{TeV},|\eta|<2.4$, CMS

$\mathrm{p}, \overline{\mathrm{p}} p_{\perp}$ at $7 \mathrm{TeV},|y|<0.5, \mathrm{ALICE}$

Enhanced strangeness with increasing n_{ch}

Lund String Fragmentation

Flavour and transverse momentum of hadrons:

- string streched between $q \bar{q}$
- $q \bar{q}$ moves apart \rightarrow energy stored in string (potential $V(r)=\kappa r$)
- creation of $\mathrm{q}_{i} \overline{\mathrm{q}}_{i}$ pairs breaks string:
$m_{\perp \mathrm{q}_{i}}=0 \quad$ on-shell production in single vertex

$m_{\perp \mathrm{q}_{i}}>0$ tunneling probability

$$
\begin{array}{cc}
\exp \left(-\pi m_{\perp \mathrm{q}_{i}}^{2} / \kappa\right)=\exp \left(-\pi m_{\mathrm{q}_{i}}^{2} / \kappa\right) & \exp \left(-\pi p_{\perp \mathrm{q}_{i}}^{2} / \kappa\right) \\
\downarrow & \downarrow \\
\text { flavour selection of } \mathrm{q}_{i} \overline{\mathrm{q}}_{i} & \left\langle p_{\perp \mathrm{q}_{i}}^{2}\right\rangle=\kappa / \pi=\sigma^{2}
\end{array}
$$

- lots of flavour parameters: - suppression of strangeness and diquarks, η and η^{\prime}
- rates for different meson multiplets
- $\mathcal{O}(20)$ free parameters in total

Thermodynamical String Model

Idea: hadron-level suppression

$$
\exp \left(-m_{\perp \text { had }} / T\right) \text { with } m_{\perp \text { had }}=\sqrt{m_{\text {had }}^{2}+p_{\perp \text { had }}^{2}}
$$

- generate $p_{\perp \text { had }}$ according to
$f_{\text {had }}\left(p_{\perp \text { had }}\right) \mathrm{d} p_{\perp \text { had }}=\exp \left(-p_{\perp \text { had }} / T\right) \mathrm{d} p_{\perp \text { had }}$
- fourier transformation to obtain quark-level distribution

$$
f_{\mathrm{q}}\left(p_{\perp \mathrm{q}}\right) \propto \int_{0}^{\infty} \frac{b J_{0}\left(b p_{\perp \mathrm{q}} / T\right)}{\left(1+b^{2}\right)^{3 / 4}} \mathrm{~d} b \quad\left[\text { fit: } \mathcal{N} \frac{\exp \left(-c p_{\perp \mathrm{q}} / T\right)}{\left(p_{\perp \mathrm{q}} / T\right)^{d}}\right]
$$

- pick hadron flavour according to $P_{\text {had }}=\exp \left(-m_{\perp \text { had }} / T\right)$
+ multiplicative factors for spin-counting, $S U(6)$ symmetry factors, ..
- heavier hadrons obtain more p_{\perp}
- 3 free parameters in total

Close-Packing of Strings

Idea: more MPIs \Rightarrow closer packing of strings

- transverse region shrinks \Rightarrow larger string tension
- guess momentum of next hadron, based on average quantities
- $n_{\text {string }}=$ number of strings that cross hadron rapidity
- effective number of strings $n_{\text {string }}^{\text {eff }}=1+\frac{n_{\text {string }}-1}{1+p_{\perp \text { had }}^{2} / p_{\perp 0}^{2}}$
- modify Gaussian width $\sigma \rightarrow\left(n_{\text {string }}^{\text {eff }}\right)^{r} \sigma$ (similar for temperature)

Close-Packing of Strings

Idea: more MPIs \Rightarrow closer packing of strings

- transverse region shrinks \Rightarrow larger string tension
- guess momentum of next hadron, based on average quantities
- $n_{\text {string }}=$ number of strings that cross hadron rapidity
- effective number of strings $n_{\text {string }}^{\text {eff }}=1+\frac{n_{\text {string }}-1}{1+p_{\perp \text { had }}^{2} / p_{\perp 0}^{2}}$
- modify Gaussian width $\sigma \rightarrow\left(n_{\text {string }}^{\text {eff }}\right)^{r} \sigma$ (similar for temperature)

Hadron Rescattering

Idea: dense hadronic gas \Rightarrow hadrons might rescatter on the way out
Find hadron pairs that can scatter:

- cut on the invariant mass of the hadron pair $m_{\text {inv }}<\sqrt{m_{1}^{2}+\left|\vec{p}_{\max }\right|^{2}}+\sqrt{m_{2}^{2}+\left|\vec{p}_{\text {max }}\right|^{2}}$
- rescattering probability: overall probability . probability for same-string

- in CoM frame rotate around angles chosen flat in $d \Omega$

Hadron Rescattering

Idea: dense hadronic gas \Rightarrow hadrons might rescatter on the way out
Find hadron pairs that can scatter:

- cut on the invariant mass of the hadron pair $m_{\text {inv }}<\sqrt{m_{1}^{2}+\left|\vec{p}_{\text {max }}\right|^{2}}+\sqrt{m_{2}^{2}+\left|\vec{p}_{\text {max }}\right|^{2}}$
- rescattering probability: overall probability probability for same-string

- in CoM frame rotate around angles chosen flat in $\mathrm{d} \Omega$

Results

Transverse momentum distributions: inclusive and pions

Results

Transverse momentum distributions: protons and kaons

Results

Enhanced strangeness with increasing $n_{\text {ch }}$

Summary and Outlook

What is new?

- option for generating $p_{\perp \text { had }}$ according to $\exp \left(-p_{\perp \text { had }} / T\right)$ with flavour selection according to $\exp \left(-m_{\perp \text { had }} / T\right)$
- effect of close-packing of strings
- simple model for hadron rescattering

What does it do?

- improves some observables, such as p_{\perp} spectra, $\left\langle p_{\perp}\right\rangle\left(m_{\text {had }}\right)$
- does not improve everything, e.g. kaon p_{\perp} remains difficult
- hadron decays are a limiting factor

Summary and Outlook

What is new?

- option for generating $p_{\perp \text { had }}$ according to $\exp \left(-p_{\perp \text { had }} / T\right)$ with flavour selection according to $\exp \left(-m_{\perp \text { had }} / T\right)$
- effect of close-packing of strings
- simple model for hadron rescattering

What does it do?

- improves some observables, such as p_{\perp} spectra, $\left\langle p_{\perp}\right\rangle\left(m_{\text {had }}\right)$
- does not improve everything, e.g. kaon p_{\perp} remains difficult
- hadron decays are a limiting factor

Further work required!

- microscopic tracing of the full space-time evolution (partons and hadrons, production and decay vertices)
- more detailed understanding and modelling

Backup

Flavour Asymmetry in Thermodynamical Model

Toy model with d and s quarks only

- $(\mathrm{d} \rightarrow \mathrm{s})$ competes with $(\mathrm{d} \rightarrow \mathrm{d}) \rightarrow \mathrm{d} \overline{\mathrm{s}}$ obtains larger p_{\perp}
- $(\mathbf{s} \rightarrow \mathbf{d})$ competes with $(\mathbf{s} \rightarrow \mathbf{s}) \rightarrow \mathbf{s} \overline{\mathrm{d}}$ obtains smaller p_{\perp}

Same T for $(\mathrm{d} \rightarrow \mathrm{s})$ and $(\mathrm{s} \rightarrow \mathrm{d})$ transitions

Different T for $(\mathrm{d} \rightarrow \mathrm{s})$ and $(\mathrm{s} \rightarrow \mathrm{d})$ transitions

Rapidity Distributions

Limiting factor: Decays

pion transverse momentum @ LHC, with and without decays, similar for protons

\Rightarrow decays wash out effects present after fragmentation

Hadron Rescattering

$\left\langle p_{\perp}\right\rangle$ in toy model (5 strings with $E=m_{Z}$ on the z axis)

Results

Average transverse momentum: as a function of $n_{\text {ch }}$ and $m_{\text {had }}$

Mean transverse momentum vs. mass at $7 \mathrm{TeV},|y|<0.5$

