

MC4BSM 2017 May 11-13; SLAC

BSM with Pythia 8

Nishita Desai (for the Pythia8 Collaboration)

- 4 public versions (current 8.226) + 3 new authors (Ilkka Helenius, Leif Lönnblad, Nadine Fischer) since 8.200.
- Addition of gamma gamma, gamma hadron processes
- New UserHooks, possible for user to write own ME+PS plugins
- New Python interface, interface to MG5_aMC@NLO
- Automated parton-shower uncertainty bands

THE CHALLENGE OF BSM SEARCHES @ LHC

- How does the BSM physics behave? Produce new particles, distribution shape changes, ...
 - Leading order (often tree-level) is enough for a smoking gun, NLO to follow if needed.

- What does SM look like?
 - Since much larger cross sections than BSM, high precision needed, i.e. N(N)LO calculations are needed.
 - Specialised generators + merging techniques needed

In Pythia 8, we have a large number of BSM processes + interfaces to external generators + sophisticated LO/NLO merging

Process Selection

- -- QCD
- -- Electroweak
- -- Onia
- -- Тор
- -- Fourth Generation
- -- Higgs
- SUSY
- New Gauge Bosons
- -- Left-Right Symmetry
- Leptoquark
- Compositeness
- Hidden Valleys
- Extra Dimensions
- Dark Matter

• BSM Higgs: Generic 2 Higgs doublet model

- Flexible Yukawa assignments to get type I/II/III/IV models
- EFT operators for anomalous couplings to gauge bosons
- CP violation possible
- New Gauge bosons
 - Z' with full interference with gamma
 - W′
 - Horizontal gauge boson R
- L-R symmetry
 - Z_R and W_R bosons corresponding to right-handed SU(2)

Process Selection

- -- QCD
- -- Electroweak
- -- Onia
- -- Тор
- -- Fourth Generation
- -- Hiaas
- SUSY
- New Gauge Bosons
- Left-Right Symmetry
- Leptoquark
- Compositeness
- Hidden Valleys
- Extra Dimensions
- Dark Matter

- 6x6 squark/slepton matrices allow processes with: CP/ Flavour/R-parity violation
- All pair-production, RPV resonant production, and twobody decays
- Up to four body decays of staus (long-lived)
- Can handle extra Higgses/higgsinos from NMSSM
- Capable of hadronising exotic states i.e. baryon-number violating RPV, R-hadrons, (and also sextets, though not really SUSY)

Process Selection

- -- QCD
- -- Electroweak
- -- Onia
- -- Тор
- -- Fourth Generation
- -- Higgs
- SUSY
- New Gauge Bosons
- Left-Right Symmetry
- -- Leptoquark
- Compositeness
- -- Hidden Valleys
- -- Extra Dimensions
- Dark Matter

L. Carloni and T. Sjöstrand, JHEP 1009 (2010) 105 L. Carloni, J. Rathsman and T. Sjöstrand, JHEP 1104 (2011) 091

- Mediator particles charged under both groups
- Normal QCD, QED radiation
- Radiation into hidden valley photons (which then decay to SM via mixing with SM gauge bosons)
- Radiation into hidden valley gluons which forms hidden sector mesons

Possible to use this implementation to study exotic signatures See e.g. "Emerging Jets" documented in Schwaller et al. JHEP 1505 (2015) 059 including modified running of dark sector couplings.

Process Selection

- -- QCD
- -- Electroweak
- -- Onia
- -- Тор
- -- Fourth Generation
- -- Higgs
- -- SUSY
- New Gauge Bosons
- Left-Right Symmetry
- -- Leptoquark
- Compositeness
- Hidden Valleys
- Extra Dimensions
- Dark Matter

- Extra dimensions
 - Randall-Sundrum
 - Large Extra-dim
 - Unparticles
- Dark Matter
 PRELIMINARY
 - DM searches at the LHC are essentially mono-X searches
 - Currently, we have one mono-jet production mechanism for Dirac DM with vector mediator
 - New Dark matter mono-X processes in progress

LINKS TO EXTERNAL PROGRAMS

Les Houches Accord SUSY Les Houches Accord HepMC Interface ProMC Files Semi-Internal Processes Semi-Internal Resonances MadGraph5 Processes HelacOnia Processes Alpgen Event Interface Matching and Merging

- -- POWHEG Merging
- -- aMC@NLO Matching
- -- CKKW-L Merging
- -- Jet Matching
- -- UMEPS Merging
- -- NLO Merging
- User Hooks

Hadron-Level Standalone External Decays Beam Shape Parton Distributions Jet Finders Random Numbers Implement New Showers RIVET usage ROOT usage

A Python Interface

- Interface to LHAPDF or other external PDF libraries.
- External showers (e.g. VINCIA, DIRE)
- Les Houches Accord files for reading events (LHEF) or runtime LHA interface.
- Semi-internal processes*
- HepMC output for programs like RIVET, Delphes etc.
- Can be compiled as a plugin to ROOT.
- Generalised SLHA input for any BSM model.*
- Python interface
- Plugin to generate events using MG5_aMC@NLO from within Pythia8 (using gridpack)

CHANGE DEFAULT BEHAVIOUR WITH USERHOOKS

UserHooks allow interruption of event generation at different stages.

- After setting up beams
- After generating hard process
- During showers (veto emissions etc.)
- After showers (but before hadronisation)
- During hadronisation
- Modify cross section
- Reject certain decays (or decay chains)
- Add vertex information (e.g. for particles produced during showers)

• ...

USERHOOK EXAMPLE: ANGULAR DISTRIBUTION IN DECAY

Change angular distribution of products of W based on polarisation from flat to $(1 \pm \cos \theta)^2$ or $\sin^2 \theta$ for (+, -, 0)

(see example main62)

ADD YOUR OWN HARD PROCESS USING SEMI-INTERNAL PROCESSES

You can use the entire Pythia internal machinery by supplying only the matrix-element-squared for your process in terms of Pythia's kinematic variables.

- In-built classes for 2→1, 2, 3 processes that the user can inherit from to write own ME using standard kinematic variables
- Possible to use your own phase space generator if desired
- New resonances can be added similarly for using "semi-internal resonance" for automatic calculation of width
- Any new parameters needed by your theory can be provided using the extended SLHA interface.

GIVE EXTERNAL PARAMETERS WITH YOUR OWN SLHA BLOCKS

LHE files already allow a lot of flexibility; new particles can be specified with quantum numbers

		p	article IV	parti	cle name								
BLOCK QNUMBERS 7654321 # balleron													
	1 (0	# 3 times	electric	charge								
	2 2	2	# number o	of spin s	tates (2S+	-1)							
	3 8	8	<pre># colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)</pre>										
	4 0	0	<pre># Particle/Antiparticle distinction (0=own anti)</pre>										
particle name anti-particle name BLOCK ONLIMBERS 8765432 # with with bar													
DLUCK	1 2 # 3 times electric charge												
	1 2	2 + 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0											
	3	2	# colour rep (1. singlet 3. triplet 6. sevtet 8. octet)										
	<u>л</u>	1	# Particle/Antiparticle distinction (O=oun anti)										
BLOC	K MASS												
#	# ID code pole mass in GeV												
	7654321 800.0 # m(balleron)												
	8765432 600.0 # m(yup)												
#		IJ	D WID	TH in Ge	V								
DECAY 7654321 2.034369169E+00 # balleron decays													
#	BR			NDA	ID1	ID2	ID3						
	9.900	00	0000E-01	3	6	5	3	#	BR(->	t]	b s	
	1.000	00	0000E-02	3	4	5	3	#	BR(->	С	b s)
		•••		U	-	•	•				•		

GIVE EXTERNAL PARAMETERS WITH YOUR OWN SLHA BLOCKS

BLOCK MYPARAMS # Parameters for my BSM theory Value No # 1.0e-2 # some small parameter 1 2 # some large parameter 2000 BLOCK NEWMIXING # Mixing for new particles 0.50 1 1 2 0.87 1 3 1222333 0.00 1 0.87 2 0.50 3 0.00 1 0.00 2 0.00 3 1.00

These can be accessed from your process via the extended SLHA interface

bool slhaPtr->getEntry(string blockName, double& val); bool slhaPtr->getEntry(string blockName, int indx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, double& val);

MATCHING AND MERGING

Matching and Merging

- POWHEG Merging
- aMC@NLO Matching
- -- CKKW-L Merging
- -- Jet Matching
- -- UMEPS Mergi

i

A range of matching and merging algorithms are available as plugins

- ► At tree-level: MLM, CKKW-L, UMEPS
- ▶ At NLO: FxFx, UNLOPS, NL³

See examples main80-89 for details

Mrenna, Skands Phys.Rev. D94 (2016) 074005

Idea: perform a shower with nominal settings

Ask: what would the probability of obtaining this event have been with **different choices** of μ_R , radiation kernels, ... ?

Easy to calculate **reweighting factors**

Output: vector of weights for each event

One for the nominal settings (unity)

+ Alternative weight for each variation

(Note: similar functionality also recently implemented in Herwig++ and Sherpa)

- Hundreds of BSM production processes already available
- Links to external ME generators via LHE, or via "semi-internal processes"
- Modular, very versatile: you can modify/overload cross sections, decays, showers, phase space, hadronisation.
- Sophisticated matching/merging machinery
- For more information, go to the online manual at: <u>http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html</u>
- Capabilities of Pythia8 demonstrated in ~90 examples