РYTHIA 8

Richard Corke

Department of Astronomy and Theoretical Physics Lund University

June 2010

Torbjörn Sjöstrand, Stefan Ask, Stephen Mrenna, Peter Skands, Lisa Carloni

Overview

2 Physics overview

3 BSM Physics

Running PYTHIA 8

5 Conclusions

ΡΥΤΗΙΑ

- General purpose Monte Carlo event generator
- Combine pQCD and models to provide link from theory (quarks, gluons) to experiment (mesons, baryons)
- Full problem "factorised" into different components
 - Hard process
 - Resonance decays
 - Parton showers
 - Underlying event
 - Hadronisation
 - Hadron decays
- Different parts may be handled by other external programs (e.g. Tauola)
- Or (with PYTHIA 8) through plugins (e.g. VINCIA)
- Outputs exclusive hadronic events
 - Analyse (e.g. FastJet)
 - Pass to detector simulator (e.g. GEANT)
 - ▶ ...

ΡΥΤΗΙΑ

Latest downloads and news:

- http://home.thep.lu.se/~torbjorn/Pythia.html
- "PYTHIA 6.4 Physics and Manual"
 T. Sjöstrand, S. Mrenna and P. Skands, JHEP 0605:026,2006, [hep-ph/0603175].
- "A Brief Introduction to PYTHIA 8.1"
 T. Sjöstrand, S. Mrenna and P. Skands, Comput. Phys. Comm. 178 (2008) 852 [arXiv:0710.3820].
- And references therein

Beams and hard processes

- Beams
 - Incoming beams: pp, $p\bar{p}$, e^+e^- , $\mu^+\mu^-$
 - PYTHIA 8: no ep, γp or $\gamma \gamma$ beam configurations
 - Built in parton distribution function (PDF) sets
 - GRV94L, CTEQ5L
 - MSTW2008 (LO and NLO), MRST LO**
 - CTEQ6L, CTEQ6L1, CTEQ6.6, CT09MC1, CT09MC2, CT09MCS
 - Easy to link to LHAPDF for many more

Hard Processes

- Built-in library of many leading-order processes
- $\blacktriangleright\,$ SM: almost all 2 \rightarrow 1 and 2 \rightarrow 2, some 2 \rightarrow 3
- BSM: a bit of everything (more to come)
- External input through Les Houches Accord (LHA) and Les Houches Event Files (LHEF)

Parton showers

- Regions of phase space where higher-order terms are enhanced
 - Full matrix element calculation not feasible
 - DGLAP evolution equations; leading log approximation of QCD
 - Sudakov form factor; shower evolution as a probabilistic process

- Initial state radiation performed through backwards evolution
 - Pick a hard $2 \rightarrow 2$ process
 - What is the probability that incoming parton *b* came from a splitting $a \rightarrow bc$?
 - PDF factors enter the evolution
- Iterate to build up event

- Still choices to make!
- Ordering
 - Transverse-momentum-ordered showers

- Recoil strategy
 - Dipole approach to recoil
 - Each radiator parton has a recoiler partner
 - Kinematics constructed directly after each branching
 - All unevolved partons on mass shell

- Matching to ME for first emission in many processes
- Aim to provide better shower behaviour at large p₁
 - Dampen shower tail in coloured final states
 - Also examine interfacing of POWHEG NLO generators to PYTHIA
 - RC & T. Sjöstrand, arXiv:1003.2384 [hep-ph]

Implementation of CKKW-L in progress (Stefan Prestel)

Multiple parton-parton interactions

- ► QCD 2 → 2, prompt photon production, Drell Yan, Charmonium & Bottomonium
- Impact parameter dependence
- Dampened cross section in $p_{\perp} \rightarrow 0$ limit

- Interleaved p_{\perp} evolution with ISR and FSR
 - ISR and MI "compete" for beam
 - Flavour dependent PDF effects
 - Showering from all interactions

Underlying event

Picture now a lot more messy

- Rescattering: scattered parton allowed to interact again
 - Same order in α_s , but one PDF weight less
 - Large background \rightarrow will be tough to find direct evidence
 - RC & T. Sjöstrand, JHEP 01 (2010) 035 [arXiv:0911.1909]

Richard Corke (Lund University)

String fragmentation - "The Lund Model"

String breaking modelled by tunnelling

Particle decays, usually isotropic

Hadronisation

- Everything connected by colour confinement strings
- Strings fragment to produce primary hadrons
- Unstable hadrons decay further

Hadronisation

- Everything connected by colour confinement strings
- Strings fragment to produce primary hadrons
- Unstable hadrons decay further

Hadronisation

- Everything connected by colour confinement strings
- Strings fragment to produce primary hadrons
- Unstable hadrons decay further

Current status

- Tuning with Rivet + Professor
 - A. Buckley et al. [hep-ph/1003.0694, hep-ph/0907.2973]
 - Tuning to e⁺e⁻ data looks okay
 - Hard physics distributions also okay
 - But problems describing the underlying event?

Possible causes

- Final-state dipoles with initial-state recoil
- Azimuthal asymmetry of radiation

Initial results promising, but still much to be checked

- ► Go further?
 - Compare first parton shower emission to $2 \rightarrow 3$ matrix elements
 - How does $2 \rightarrow 2 \otimes PS$ fill the phase space?
 - Work ongoing!

- Much early focus on SM physics
- Emphasis on providing solid links to external programs
 - Les Houches Accord (LHA) and Les Houches Events Files (LHEF) can be used to read in parton-level events for showering and hadronisation
 - Easy to use PYTHIA to simulate a wide range of BSM processes in this way
 - Important to understand what choices need to be made and what PYTHIA can and can't do
- But also complemented by a library of common BSM processes

The University of Manchester

Available BSM Processes

Fourth Generation

Production of fourth generation quarks and leptons

Provide a template for models with new particles with similar characteristics

Include most quark scenarios (x = t,b):

and one lepton scenario: $\int f$

$$f\bar{f} \to \tau' \nu$$

Parameters:

- Masses
- 4th generation CKM matrix elements

One/Two Higgs Doublets

(H_{i=1-3} = physical states of the h, H and A fields)

Contains:

- The standard set of SM processes
- Single H_i and H^{+/-} production
- ${\rm H_i}$ and ${\rm H^{\text{+/-}}}$ pair production
- Higher order processes for high-p_T samples

Parameters:

Higgs mass(es)

(SM)

• Higgs width parameters (cubicWidth and runningLoopMass)

(BSM)

- · Individual couplings to the SM particles
- SUSY couplings will be given by SLHA
- tan(β)
- Scalar / pseudo-scalar mixing, including CP violating interference

Available BSM Processes

<u>New Gauge Bosons</u>

The University of Manchester

From a new SU(2) or U(1) gauge group Z':

Z' production with Z and/or γ^{\star} interference

No dedicated high-pT processes, but proper matching of ISR to the Z'+1 jet ME

Parameters:

- g_v / g_a couplings for any fermion
- WW coupling + decay-angle parameter

W':

Same as for Z' but with less gv / ga flexibility

R⁰ ("Horizontal" gauge boson):

Only mass parameter

Left-Right Symmetry

New SU(2)_R gauge group and extended Higgs sector

Contains:

- Production of W_{R} and Z_{R}
- Production of H++/--
- Allow for right handed neutrino decays and cascade decays depending on mass hierarchy

Other Higgs processes controlled by 2HD category

Parameters:

- Masses
- g_L , g_R and Higgs couplings
- v_L Vacuum Expectation Value

Available BSM Processes

Leptoquark

Production of a scalar leptoquark (Conserved, but variable flavors)

Parameters:

- Mass
- Coupling

Compositeness

Production of excited leptons and quarks (and anomalous couplings)

Parameters:

- Masses
- Coupling
- · Compositeness scale

In Progress!

MANCHESTER

- Only groups of processes can be turned ON/OFF.
- All masses and couplings are given to Pythia 8 by SLHA1 or SLHA2 files.
- Currently gluino, squark, neutralino and chargino pair production (LO) is available, e.g.
 SUSY:gg2gluinogluino
 SUSY:qqbar2gluinogluino
 SUSY:qg2squarkgluino
 etc.
- Allows for non-minimal flavour and/or CP violation.

Remaining

- Direct slepton production processes, using the same general SUSY 2->2 structure as developed for the above processes.
- Decays, initially based only on phase space and externally computed total widths from BSM-LHEF or SLHA DECAY tables. Later including the matrix elements.
- Only R-parity conserving processes to start with.

G. Bozzi et al., NPB 787 (2007) 1.

Reminder: Compactified Extra Dimension

- Momentum modes in ED give KK tower.
- Large ED give dense KK states, i.e. effectively continuous mass distribution.
- ED phase space could compensate small gravitational coupling (aka ADD scenario).

LED model parameters in Pythia8

 $\begin{array}{l} n & = \mbox{integer nr of large extra dimensions.} \\ M_D & = \mbox{scale of gravity in } D = 4 + n \mbox{ dimensions.} \\ \Lambda_{\tau} & = \mbox{cut-off scale for virtual G exchange.} \end{array}$

other popular conventions

$$\begin{split} M^{n+2} &= 2 M_D^{n+2} \\ M_S^{n+2} &= 8 \pi^{1-\frac{n}{2}} \Gamma\left(\frac{n}{2}\right) M_D^{n+2} \\ \Lambda_H^4 &= \frac{2}{\pi} \Lambda_T^4 \end{split}$$

N. Arkani-Hamed, S. Dimopoulos, G. Dvali, PLB 429 (1998) 263

G.F. Giudice, R. Rattazzi, J.D. Wells, NPB 544 (1999) 3

E.A. Mirabelli, M. Perelstein, M.E. Peskin, PRL 82 (1999) 2236

T. Han, J.D. Lykken, R.-J. Zhang, PRD 59 (1999) 105006

J.L. Hewett, T.G. Rizzo, JHEP 0712 (2007) 009

Unparticle model parameters in Pythia8 Spin = 0, 1 or 2.

- d_U = scale dimension parameter.
- Λ_{U} = unparticle renormalization scale.
- λ = coupling between U and SM (related to M_U).

Unpartices (U) belong to a scale invariant sector, only interacting with the SM via a connector sector at a high energy scale.

H. Georgi, PRL 98 (2007) 221601

Gives rise to

- Continuous U mass spectrum.
- Non-integer d_U -body phase space.

Similar to LED $d_U = \frac{n}{2} + 1$

Particle with access to one ED appears with a 1.5 particle phase space.

K. Cheung, W.Y. Keung, T.C. Yuan, PRD 76 (2007) 055003

Common implementation, based on unparticle formulae, where the G process is obtained (when possible) from spin-2 unparticle matrix elements.

These common implementations simplifies for comparisons between the similar processes.

U	to	G	E	m	iss	sion
	d_{i}	U	_	$\frac{n}{2}$	+	1

 $A(d_U) \leftrightarrow S(n)$

 $\Lambda_U = M_D$

 $\lambda_1 = \lambda_2 = 1$

U to G Exchange

 $d_U = 2$ $\Lambda_U = \Lambda_T$ $\lambda^2 \cdot \chi = 4\pi$

(phase space factors)

(factor from U propagator)

Doc: arXiv:0912.4233v1 [hep-ph]

Real G / U Emission (LED/U)

Already Available

Processes

Mono-jet: gg2Gg, gg2Gq, qqbar2Gg

Mono-photon: ffbar2Ggamma

Mono-Z: ffbar2GZ

G and U options separated into ExtraDimensionsLED and ExtraDimensionsUnpart sections and name differ with G replaced by U.

- Mono-photon process corresponds to the photon limit of the mono-Z process.
- No interference between photon/Z.
- The Z decays isotropically.
- No spin-2 U Matrix elements for mono-jet processes, i.e. G only spin-2 mono-jet scenario.

Already Available

Processes Di-lepton: gg211bar, qqbar211bar

Di-photon: gg2gammagamma, qqbar2gammagamma

Include helicity dependent couplings between a spin-1 U and fermions (same options as for eta parameter on slide 6).

Could lead to interesting interference patterns and effects on the angular distribution.

H. Georgi, PLB 650 (2007) 275

Forward-Backward Asymmetry

Smaller extra dimension models often give rise to resonances due the KK modes (smaller size, larger KK mode separation).

Complementary set of related resonances

 Graviton resonance, gg and ffbar initiated / spin-2 / colour singlet. Common coupling to all SM particles (RS1 with SM on the TeV brane). Flavour dependent couplongs (RS1 with SM in bulk). 	Already Available in Progress!
 Z' resonance, ffbar initiated / spin-1 / colour singlet. Possible to specify any combination of couplings and SM interf. 	Already Available
 Z_{KK} + gamma_{KK} resonances, (See Mark Suttons Talk!) • ffbar initiated / spin-1 / colour singlet. • Include Z_{KK}/gamma_{KK} interference and multiple KK modes. 	Next Version
 Gluon resonance, qqbar initiated / spin-1 / colour octet. 	Next Version

BSM Physics Hidden Valleys

- "Echoes of a hidden valley at hadron colliders"
 M. Strassler, K. Zurek, Phys.Lett.B651:374-379,2007 [hep-ph/0604261]
 - Hidden gauge sector which does not couple to SM particles
 - Low mass scale
 - Barrier separates this sector from the SM
 - Coupling through e.g. heavy communicators
 - Decays via tunneling

- Whole class of models
 - What are the gauge groups of the hidden sector?
 - What are the communicators?

BSM Physics Hidden Valleys

- "Visible Effects of Invisible Hidden Valley Radiation"
 - L. Carloni and T. Sjöstrand, arXiv:1006.2911 [hep-ph]
 - Tools for Hidden Valley shower in PYTHIA 8
 - HV contains Abelian U(1) or non-Abelian unbroken SU(N) gauge group
 - Particles (F_v) content mirrors SM flavour structure
 - F_v are charged under both SM and HV gauge groups
 - ▶ Decays to SM particle and invisible, massive HV particle (q_v) : $F_v \rightarrow fq_v$

BSM Physics

Hidden Valleys

- MT2 distribution
 - Lesters-Summers [hep-ph/9906349], Matchev [hep-ph/0910.3679]
 - $m_T^2 = M_e^2 + M_{q_v}^2 + 2(E_T^e \not\!\!\!E_T^{q_v} \mathbf{p}_T^e \cdot \not\!\!\!\!p_T^{q_v})$
 - Endpoint gives M_{Ev}
- Effects at LHC @ 14 TeV
- $L = 100 fb^{-1}, M_{D_v} = 1 \text{ TeV}, M_{q_v} = 10 \text{ GeV}$
- Tools coming in PYTHIA 8.140

Overview

Latest code available from:

http://home.thep.lu.se/~torbjorn/Pythia.html

To get up and running:

- tar zxvf pythia81xx.tgz
- cd pythia81xx
- ./configure; make

Some important files:

README

htmldoc/pythia8100.pdf htmldoc/Welcome.html htmldoc/worksheet.pdf phpdoc/

examples/

More detailed installation instructions (HepMC, LHAPDF, etc..) A Brief Introduction to PYTHIA 8.1 Full manual Worksheet Interactive manual when installed on a PHP webserver Over 30 example programs (make mainNN; ./mainNN.exe)

Overview

- PYTHIA 8 is compiled to a library
- One include file and namespace:
 - #include "Pythia.h"
 - using namespace Pythia8;
- Generator object is created by instantiating the Pythia class
 - Pythia pythia;
- Different ways to initialise
 - > pythia.init(idA, idB, eCM);
 - > pythia.init("LHEF filename");
- Generate next event
 - > pythia.next();
- Event record is a C++ vector of 'Particle' class
 - > pythia.event[3].id();
 - > pythia.event[10].isCharged();
 - pythia.event[10].p();
- Summary information
 - > pythia.statistics();

Settings and particle data

- Internal settings database
 - pythia.readString("command");
 - pythia.readFile("filename");
 - Where filename contains one command per line
- A command has the form (not case sensitive):
 - Settings: 'task:property = value'

Command		Description
PartonLevel:FSR	= off	Master switch for FSR
SpaceShower:pTmin	= 1.25	Lower cutoff for ISR
SigmaProcess:alphaSorder	= 2	2nd order α_s running (for hard process)
SoftQCD:minBias	= on	Switch on minimum bias processes
HiggsSM:gg2H	= on	Switch on Standard Model Higgs production

Particle data 'id:property = value' or 'id:channel:property = value'

Command		Description
25:m0	= 150.0	Set Higgs mass to 150.0 GeV
25:onMode	= off	Turn off all Higgs decays
25:onlfAll	= 23 23	Turn on Higgs to ZZ decays
111:mayDecay	= 0	Turn off π^0 decays
215:3:products	= 211 111 111	Let $a_2^+ ightarrow \pi^+ \pi^0 \pi^0$

Full details of all commands in the HTML documentation

PHP/HTML documentation

Change settings in PHP pages and write out command file

TOOLS 2010, Winchester, UK

First example: main01.cc

```
#include "Pythia.h"
using namespace Pythia8;
int main() {
  Pythia pythia;
                                                          // Generator
  pythia.readString("HardQCD:all = on");
                                                           // Process selection
  pythia.readString("PhaseSpace:pTHatMin = 20.");
                                                           // Cuts
  pythia.init( 2212, 2212, 14000.);
                                                           // IHC initialisation
  pythia.settings.listChanged();
                                                          // Print settings
  Hist mult("charged multiplicity", 100, -0.5, 799.5);
                                                          // Book histogram
  for (int iEvent = 0; iEvent < 100; ++iEvent) {
                                                          // Start of event loop
    if (!pythia.next()) continue;
                                                           // Generate event
    if (iEvent < 1)
      { pythia.info.list(); pythia.event.list(); }
                                                          // Print first event
    int nCharged = 0:
                                                           // Count nCha
    for (int i = 0; i < pythia.event.size(); ++i)
      if (pythia.event[i].isFinal() &&
          pythia.event[i].isCharged()) ++nCharged;
    mult.fill( nCharged );
                                                           // Fill histogram
                                                           // End of event loop
  pythia.statistics();
                                                           // Print statistics
  cout << mult:
                                                           // Print histogram
  return 0;
                                                           // Done
}
```

Richard Corke (Lund University)

Understanding the output: pythia.init()

Not much to see yet; estimated cross sections and MI initialisation

*----- PYTHIA Process Initialization -----| We collide p+ with p+ at a CM energy of 1.400e+04 GeV | Subprocess Code | Estimated | max (mb) 111 | 4.206e+00 | | g g -> g g | g g -> g gbar (uds) 112 | 4.407e-02 | 113 | 2.294e+00 | | q g -> q g 114 | 2.149e-01 | | q q(bar)' -> q q(bar)' | q qbar -> q q 115 | 1.454e-03 | | q qbar -> q' qbar' (uds) 116 | 6.426e-04 | 121 | 1.453e-02 | | g g -> c cbar | q qbar -> c cbar 122 | 2.129e-04 | | g g -> b bbar 123 | 1.323e-02 | | q qbar -> b bbar 124 | 2.018e-04 | *----- End PYTHIA Process Initialization ------*----- PYTHIA Multiple Interactions Initialization -----* sigmaNonDiffractive = 54.72 mb pT0 = 3.68 gives sigmaInteraction = 192.71 mb: accepted *----- End PYTHIA Multiple Interactions Initialization -----*

Understanding the output: pythia.settings.listChanged() & pythia.info.list()

> pythia.settings.listChanged(): check setup

*	PYTHIA Flag + Mod	e + Parm + Word	Settings (c	changes only)				*
I								1
Name			1	Now	De	fault	Min	Max
1			1		1			1
HardQCD	:all		1	on	1	off		1
PhaseSp	ace:pTHatMin		1	20.00000	1	0.0	0.0	1
1								1
*	End PYTHIA Flag +	Mode + Parm +	Word Setting	1s				*

▶ pythia.info.list(): event information (all properties available in code; see HTML documentation → Event Information)

```
    PYTHIA Info Listing
    Beam A: id = 2212, pz = 7.000e+03, e = 7.000e+03, m = 9.383e-01.
    Beam B: id = 2212, pz = -7.000e+03, e = 7.000e+03, m = 9.383e-01.
    In 1: id = 21, x = 2.147e-03, pdf = 2.023e+01 at Q2 = 6.659e+02.
    In 1: id = 21, x = 6.857e-03, pdf = 9.931e+00 at same Q2.
    Subprocess g g -> g g with code 111 is 2 -> 2.
    It has shat = 2.886e+03, tHat = -1.042e+03, uHat = -1.844e+03, pTHat = 2.581e+01, m3Hat = 0.000e+00, m4Hat = 0.000e+00, thetaHat = 1.289e+00, phiHat = 2.024e+00.
    alphaEM = 7.707e-03, alphaS = 1.571e-01 at Q2 = 6.659e+02.
    Impact parameter b = 3.972e-01 gives enhancement factor = 2.548e+00.
    Max pT scale for MI = 2.581e+01, ISR = 2.581e+01, FSR = 2.581e+01.
    Number of MI = 5. ISR = 20, FSRproce = 148, FSRreson = 0.
    ------- End PYTHIA Info Listing
```

Richard Corke (Lund University)

Understanding the output: pythia.event.list()

		PYTHIA Eve	nt Listing	g (complet	ce ever	nt) -							
no	id	name	status	mo	thers	daugł	nters	co	lours	p_x	р_у	p_z	e	m
0	90	(system)	-11	0	0	0	0	0	0	0.000	0.000	0.000	14000.000	14000.000
1	2212	(p+)	-12	0	0	296	0	0	0	0.000	0.000	7000.000	7000.000	0.938
2	2212	(p+)	-12	0	0	297	0	0	0	0.000	0.000	-7000.000	7000.000	0.938
3	-1	(dbar)	-21	6	0	5	5	0	101	0.000	0.000	204.251	204.251	0.000
4	1	(d)	-21	7	7	5	5	101	0	0.000	0.000	-10.210	10.210	0.000
5	23	(ZO)	-22	3	4	8	8	0	0	0.000	0.000	194.041	214.461	91.332
6	-1	(dbar)	-41	47	47	9	3	0	103	0.000	0.000	307.261	307.261	0.000
7	1	(d)	-42	12	12	4	4	101	0	-0.000	-0.000	-10.210	10.210	0.000
8	23	(ZO)	-44	5	5	49	49	0	0	8.809	11.101	212.343	231.586	91.332
9	21	(g)	-43	6	0	10	11	101	103	-8.809	-11.101	84.708	85.885	0.000
10	21	(g)	-51	9	0	40	40	104	103	-4.019	-12.530	18.187	22.448	0.000
11	21	(g)	-51	9	0	17	18	101	104	-4.790	1.429	64.882	65.075	0.000
12	1	(d)	-53	19	19	7	7	101	0	-0.000	-0.000	-11.848	11.848	0.000
13	21	(g)	-31	27	0	15	16	106	107	0.000	0.000	0.449	0.449	0.000
14	2	(u)	-31	28	28	15	16	105	0	0.000	0.000	-1439.239	1439.239	0.000
15	21	(g)	-33	13	14	29	29	105	107	-3.210	5.131	-20.260	21.145	0.000
16	2	(u)	-33	13	14	30	30	106	0	3.210	-5.131	-1418.530	1418.543	0.330

• Cheated a bit; this is a Z^0 event (but with a lot to see)

- Hard process
- ▶ Initial state radiation (note: the Z^0 now has p_{\perp})
- Final state radiation
- Multiple interaction
- Doesn't end there!

		PYTHIA H	Event Listing	g (co	omplet	e event	t)							
no	id	name	status	motl	hers	daught	ters	col	ours	p_x	P_Y	p_z	e	m
296	-1	(dbar)	-61	1	0	223	223	0	103	-0.453	-0.938	707.715	707.716	0.000
297	1	(d)	-61	2	0	60	60	157	0	0.850	-0.456	-16.777	16.804	0.000
298	23	(ZO)	-62	61	61	399	400	0	0	8.292	10.315	210.714	230.038	91.332
299	21	(g)	-62	274	274	474	0	150	145	0.060	-0.041	0.221	0.233	0.000
300	21	(g)	-62	177	177	473	0	108	140	0.433	-0.078	3.610	3.637	0.000
399	1	(d)	-23	298	0	401	402	102	0	-6.292	-30.751	27.566	41.776	0.330
400	-1	(dbar)	-23	298	0	403	403	0	102	14.583	41.066	183.148	188.262	0.330
401	1	(d)	-51	399	0	404	405	202	0	-8.192	-31.438	31.555	45.291	0.330
402	21	(q)	-51	399	0	406	406	102	202	6.210	12.823	50.136	52.121	0.000
403	-1	(dbar)	-52	400	400	427	427	0	102	10.274	28.930	129.023	132.626	0.330
400 401 402 403	-1 1 21 -1	(dbar) (d) (g) (dbar)	-23 -51 -51 -52	298 399 399 400	0 0 400	403 404 406 427	403 405 406 427	0 202 102 0	102 0 202 102	14.583 -8.192 6.210 10.274	41.066 -31.438 12.823 28.930	183.148 31.555 50.136 129.023	188.262 45.291 52.121 132.626	0. 0. 0.

Resonance decays

- Short lived resonances → decay already considered at the hard process stage (and then "stitched" onto the event)
- In several cases, decay angular distributions are encoded as part of the specific process
- Subsequent resonance shower from decay products

Understanding the output: pythia.event.list()

		PYTHIA E	vent List	ing ((compl	ete eve	ent) ·							
no	id	name	status	moth	ners	daugl	hters	col	ours	p_x	р_у	p_z	e	m
938	22	gamma	91	803	0	0	0	0	0	-0.009	0.094	-0.171	0.195	0.000
939	211	pi+	91	812	0	0	0	0	0	0.118	0.116	-0.507	0.552	0.140
940	-211	pi-	91	812	0	0	0	0	0	0.108	-0.140	-0.390	0.450	0.140
941	221	(eta)	-91	812	0	973	975	0	0	0.066	0.059	-0.993	1.137	0.548
942	-211	pi-	91	813	0	0	0	0	0	-0.036	0.848	-1.590	1.808	0.140
943	111	(pi0)	-91	813	0	976	977	0	0	0.394	0.098	-0.938	1.031	0.135
971	11	e-	91	928	0	0	0	0	0	-0.186	-0.002	-1.766	1.776	0.001
972	-11	e+	91	928	0	0	0	0	0	-0.086	0.000	-0.798	0.803	0.001
973	211	pi+	91	941	0	0	0	0	0	-0.161	0.075	-0.677	0.714	0.140
974	-211	pi-	91	941	0	0	0	0	0	0.196	-0.014	-0.232	0.335	0.140
975	22	gamma	91	941	0	0	0	0	0	0.031	-0.002	-0.083	0.089	0.000
976	22	gamma	91	943	0	0	0	0	0	0.124	-0.007	-0.412	0.431	0.000
977	22	gamma	91	943	0	0	0	0	0	0.270	0.106	-0.525	0.600	0.000
		-	Charge s	um: 2	2.000		Moi	nentum	sum:	0.000	0.000	0.000	14000.000	14000.000

----- End PYTHIA Event Listing

- Events get large, but easy to process in code
- All particles with positive status codes are final
- All particle properties displayed in the listing (and others as well) are accessible through appropriate methods
 - e.g. pythia.event[977].px();
 - ► HTML documentation → Particle Properties
 - Also contains a list of status codes and their meanings

Understanding the output: pythia.statistics()

* PYTHIA Event and Cross Section S	tatistics							
1								
Subprocess	Code	1	Nu	umber of eve	ents	1	sigma +	- delta
		i i	Tried	Selected	Accepted	i.	(estimat	ed) (mb)
		i i				i.		
		·						
		1				1		
g g -> g g	111	1	521518	60320	60320	1	4.857e-01	1.058e-03
g g -> g gbar (uds)	112	1	5484	1255	1255	1	9.788e-03	1.476e-04
q q -> q q	113	1	284792	34105	34105	1	2.752e-01	8.361e-04
q q(bar)' -> q q(bar)'	114	1	26781	3451	3451	1	2.741e-02	2.555e-04
q qbar -> g g	115	1	194	51	51	1	3.611e-04	2.473e-05
q qbar -> q' qbar' (uds)	116	1	79	28	28	1	2.318e-04	1.987e-05
g g -> c cbar	121	1	1857	402	402	1	3.292e-03	8.640e-05
q qbar -> c cbar	122	1	29	6	6	1	6.940e-05	1.243e-05
g g -> b bbar	123	1	1654	372	372	1	3.100e-03	8.429e-05
q qbar -> b bbar	124	1	34	10	10	1	6.189e-05	9.902e-06
		1				1		1
sum		1	842422	100000	100000	1	8.052e-01	1.386e-03
								1
* End PYTHIA Event and Cross Secti	on Statisti	.cs -						

Overview of number of events generated and estimated cross sections

- Tried events reflect the original number of phase-space points probed, as part of the upper estimate
- Selected events correspond to those that survive the internal Monte-Carlo selection procedure
- Accepted events are those that also survive the additional user cuts

Understanding the output: pythia.statistics()

*-		PYTHIA Error and Warning Messages Statistics
	times	message
	1	Error in BeamRemnants::setKinematics: kinematics construction failed
	367	Error in Pythia::next: hadronLevel failed; try again
	15	Error in SpaceShower::pT2nearQCDthreshold: stuck in loop
	255	Error in StringFragmentation::fragment: stuck in joining
	112	Error in StringFragmentation::fragmentToJunction: caught in junction flavour loop
	1	Warning in MultipleInteractions::init: maximum increased
	38	Warning in MultipleInteractions::pTnext: weight above unity
	3	Warning in ParticleDataEntry::initBWmass: switching off width
	12	Warning in Pythia::check: energy-momentum not quite conserved
	21	Warning in SpaceShower::pT2nextQCD: weight above unity
	99	Warning in StringFragmentation::fragmentToJunction: bad convergence junction rest frame
*-		End PYTHIA Error and Warning Messages Statistics

Warnings and errors

- Messages are printed only the first time it occurs; after that, counted only
- Warning: minor problem that is automatically fixed by PYTHIA
- Error: bigger problem, but still automatically fixed by backing up and trying again
- When to worry?
 - pythia.next() returns true (event okay) or false (abort)
 - An abort means an event could not be completed
 - Can skip such events, but may be a sign that something isn't right!

Understanding the output: histograms

The final result!

2010-06-26 22:38	charged multiplicity
2010-06-26 22:38 4.35:10" 3 4.05:10" 3 4.05:10" 3 3.00:10" 3 3.00:10" 3 3.00:10" 3 3.00:10" 3 3.00:10" 3 3.00:10" 3 3.00:10" 3 3.00:10" 3 2.05:10" 3 2.05:10" 3 2.05:10" 3 2.05:10" 3 2.05:10" 3 3.00:10" 3 1.05:10" 3	charged multiplicity 1 1
0.30*10^3	5XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Contents *10^ 3 *10^ 2 *10^ 1 *10^ 0	000000001222333334444444333322211110000000000
Low edge *10^ 2 *10^ 1 *10^ 0	$- \\ 0000000000000111111111111122222222222$
Entries = All chan = 1.00	100000 Mean = 1.9158e+02 Underflow = 0.0000e+00 Low edge = -5.0000e-01 00e+05 Rms = 6.9434e+01 Overflow = 0.0000e+00 High edge = 7.9950e+02

- PYTHIA 8 is a general purpose Monte Carlo event generator
- Simple to use..
- ... but a lot going on behind the scenes!
- Full tuning still to come
- Worksheet is a great place to get start
- Feedback always welcome!

