Richard Corke

Department of Astronomy and Theoretical Physics Lund University

September 2010

Overview

MPI in PYTHIA 8

2 Enhanced screening

3 Rescattering

5 Summary

Note: what follows covers the current MPI framework of PYTHIA 8

- Transverse-momentum-ordered parton showers
- MPI also ordered in p_⊥
 - Mix of possible underlying event processes, including jets, γ , J/ ψ , DY, ...
 - Radiation from all interactions
- Interleaved evolution for ISR, FSR and MPI

$$\begin{split} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\rho_{\perp}} &= \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\rho_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\rho_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\rho_{\perp}}\right) \\ &\times \quad \exp\left(-\int_{\rho_{\perp}}^{\rho_{\perp \max}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\rho_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\rho_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\rho_{\perp}'}\right) \mathrm{d}\rho_{\perp}'\right) \end{split}$$

MPI overview

• Ordered in decreasing p_{\perp} using "Sudakov" trick

$$\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} = \frac{1}{\sigma_{\mathrm{nd}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\boldsymbol{p}_{\perp}} \; \exp\left(-\int_{\boldsymbol{p}_{\perp}}^{\boldsymbol{p}_{\perp i-1}} \frac{1}{\sigma_{\mathrm{nd}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\boldsymbol{p}_{\perp}'} \mathrm{d}\boldsymbol{p}_{\perp}'\right)$$

 QCD 2 → 2 cross section divergent in p_⊥ → 0 limit, but q/g not asymptotic states

▶ Regularise cross section, $p_{\perp 0}$ is now a free parameter

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\boldsymbol{p}_{\perp}^2} \propto \frac{\alpha_s^2(\boldsymbol{p}_{\perp}^2)}{\boldsymbol{p}_{\perp}^4} \rightarrow \frac{\alpha_s^2(\boldsymbol{p}_{\perp 0}^2 + \boldsymbol{p}_{\perp}^2)}{(\boldsymbol{p}_{\perp 0}^2 + \boldsymbol{p}_{\perp}^2)^2}$$

$p_{\perp 0}$ and energy scaling

- $p_{\perp 0}$ depends on energy
- Ansatz: scales in a similar manner to the total cross section (effective power related to the Pomeron intercept)

$$oldsymbol{
ho}_{\perp 0}(E_{
m CM}) = oldsymbol{
ho}_{\perp 0}^{
m ref} imes \left(rac{E_{
m CM}}{E_{
m CM}^{
m ref}}
ight)^{E_{
m CM}^{
m pow}}$$

- Need many measurements at different energies
 - Rick Field, MB & UE Working Group, Tune Z1 (PYTHIA 6)

Impact parameter

- Require one interaction for a physical event
- Introduce impact parameter, b, with matter profile
 - Single Gaussian; no free parameters
 - Overlap function

$$\exp\left(-b^{\mathcal{E}_{\exp}^{\mathrm{pow}}}
ight)$$

Double Gaussian

$$\rho(\mathbf{r}) \propto \frac{1-\beta}{a_1^3} \exp\left(-\frac{\mathbf{r}^2}{a_1^2}\right) + \frac{\beta}{a_2^3} \exp\left(-\frac{\mathbf{r}^2}{a_2^2}\right)$$

- Time-integrated overlap of hadrons during collision
 - Average activity at $b \propto \mathcal{O}(b)$

$$\mathcal{O}(b) = \int \mathrm{d}t \int \mathrm{d}^3 x \rho(x, y, z) \ \rho(x + b, y, z + t)$$

- Central collisions usually more active
- Probability distribution broader than Poissonian

PDF rescaling and primordial k_{\perp}

- ▶ ISR and MPI compete for beam momentum \rightarrow PDF rescaling
- Squeeze original x range

$$0 < x < 1 \quad \rightarrow \quad 0 < x < \left(1 - \sum x_i\right)$$

- Flavour effects
 - Sea quark initiator (q_s) leaves behind an anti-sea companion (q_c)
 - q_c distribution from $g \rightarrow q_s + q_c$ perturbative ansatz
 - Normalisation of sea + gluon distributions fluctuate for total momentum conservation
- Primordial k₁
 - Needed for agreement with e.g. p⊥(Z⁰) distributions
 - Give all initiator partons Gaussian k_{\perp} , width

$$\sigma(\boldsymbol{Q}, \boldsymbol{\widehat{m}}) = \frac{\boldsymbol{Q}_{\frac{1}{2}} \,\sigma_{\text{soft}} + \boldsymbol{Q} \,\sigma_{\text{hard}}}{\boldsymbol{Q}_{\frac{1}{2}} + \boldsymbol{Q}} \; \frac{\boldsymbol{\widehat{m}}}{\boldsymbol{\widehat{m}}_{\frac{1}{2}} + \boldsymbol{\widehat{m}}}$$

Rotate/boost systems to new frame

Colour reconnection

 Rearrangement of final-state colour connections such that overall string length is reduced

- Large amount of reconnection required for agreement with data
- Probability for a system to reconnect with a harder system

$$egin{aligned} \mathcal{P} &= rac{p_{\perp R}^2}{(p_{\perp R}^2 + p_{\perp}^2)} \;, \ p_{\perp R} &= R*p_{\perp 0}^{\mathrm{MI}} \end{aligned}$$

- Idea of Gösta Gustafson from work on modeling initial states with an extended Mueller dipole formalism
 - "Elastic and quasi-elastic *pp* and γ**p* scattering in the Dipole Model,"
 C. Flensburg, G. Gustafson and L. Lönnblad, Eur. Phys. J. C 60 (2009) 233

- Even at fixed impact parameter, initial state will contain more/less fluctuations on an event-by-event basis
 - ► More activity → more screening

- Idea of Gösta Gustafson from work on modeling initial states with an extended Mueller dipole formalism
 - "Elastic and quasi-elastic *pp* and γ**p* scattering in the Dipole Model,"
 C. Flensburg, G. Gustafson and L. Lönnblad, Eur. Phys. J. C 60 (2009) 233

- Even at fixed impact parameter, initial state will contain more/less fluctuations on an event-by-event basis
 - ► More activity → more screening

Rescattering

- MPI traditionally disjoint $2 \rightarrow 2$ interactions
- Rescattering: allow an already scattered parton to interact again

Investigated by Paver and Treleani (1984), size of effect

$$\frac{\mathrm{d}\sigma_{\mathrm{int}}}{\mathrm{d}p_{\perp}^{2}} = \sum \int \mathrm{d}x_{1} \int \mathrm{d}x_{2} \int f_{1}(x_{1}, Q^{2}) f_{2}(x_{2}, Q^{2}) \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^{2}} \sim N_{1}N_{2}\hat{\sigma}$$
$$\sigma_{4\to4} \sim (N_{1}N_{2}\hat{\sigma})(N_{1}'N_{2}'\hat{\sigma}) \qquad \sigma_{3\to3} \sim (N_{1}N_{2}\hat{\sigma})(N_{1}'\hat{\sigma})$$
$$\frac{\sigma_{3\to3}}{\sigma_{4\to4}} \sim \frac{1}{N_{2}'} \rightarrow \mathrm{small}$$

- But should be there!
 - Plays a role in the collective effects of MPI
 - Possible colour connection effects

Rescattering

 Typical case of small angle scatterings between partons from 2 incoming hadrons, such that they are still associated with their original hadrons

$$f(x, Q^2) \rightarrow f_{\text{rescaled}}(x, Q^2) + \sum_n \delta(x - x_n)$$

In this limit, momentum sum rule holds

$$\int_0^1 x f_{\text{rescaled}}(x, Q^2) \, \mathrm{d}x + \sum_n x_n = 1$$

- Original MPI interactions supplemented by:
 - Single rescatterings: one parton from the rescaled PDF, one delta function
 - Double rescatterings: both partons are delta functions
- One simplification: rescatterings always occur at "later times"
 - Z⁰ preceeded by rescattering not possible

In general not possible to uniquely identify a scattered parton with an incoming hadron, so use approximate rapidity based prescription

- Little sensitivity to choice
 - Natural suppression for single rescattering
 - No suppression for double rescattering, but still small effect

In general not possible to uniquely identify a scattered parton with an incoming hadron, so use approximate rapidity based prescription

Step: Step function at y = 0Simultaneous: Partons belong to both beams simultaneously Tanh/linear: In between

- Little sensitivity to choice
 - Natural suppression for single rescattering
 - No suppression for double rescattering, but still small effect

- Use step prescription
- Amount of rescattering sensitive to amount of underlying activity
 - Default tune change starting with PYTHIA 8.127
 - MPI: $p_{\perp 0}^{\text{ref}} = 2.15 \rightarrow 2.25, E_{\text{CM}}^{\text{pow}} = 0.16 \rightarrow 0.24$
 - Matter profile from double to single Gaussian
 - ISR activity increased

		Tevatron		LHC	
		Min Bias	QCD Jets	Min Bias	QCD Jets
	Scatterings	2.81	5.09	5.19	12.19
Old	Single rescatterings	0.41	1.32	1.03	4.10
	Double rescatterings	0.01	0.04	0.03	0.15
	Scatterings	2.50	3.79	3.40	5.68
New	Single rescatterings	0.24	0.60	0.25	0.66
	Double rescatterings	0.00	0.01	0.00	0.01

Tevatron: pp̄, $\sqrt{s} = 1.96$ TeV, QCD jet $\hat{p}_{\perp min} = 20$ GeV LHC: pp, $\sqrt{s} = 14$ TeV, QCD jet $\hat{p}_{\perp min} = 50$ GeV

Double rescattering always small, so ignored in what follows

- So far nice and simple, but want fully hadronic events
 - Integration with showers needed
 - Keep system mass/rapidity unchanged where possible
- Colour effects
 - Parton showers use dipole picture for recoil
 - With rescattering, colour can flow between systems

Full event generation, including showers, primordial k_⊥ and colour reconnections

Rescattering

- Compare sources of 3- and 4-jets at the parton level
- Contributions to 3-jet rate
 - $2 \rightarrow 3$ from single radiation
 - $3 \rightarrow 3$ from single rescattering
 - $4 \rightarrow 3$ double parton scattering with one jet lost
- Contributions to 4-jet rate
 - $\blacktriangleright~2 \rightarrow 4$ from double radiation
 - $3 \rightarrow 4$ from single radiation + single rescattering
 - 4 → 4 from DPS
 - $4 \rightarrow 4'$ from two single rescatterings

pp, $\sqrt{s}=$ 14 TeV, new tune, $p_{\perp}~>~$ 10 GeV, $|\eta|~<~$ 1.0

- Hadron level
 - Feed results into FastJet, anti-k⊥ algorithm, R = 0.4
 - 2-, 3- and 4-jet exclusive cross sections
 - Some increase in jet rates, but contributions can be "compensated" by changes in parameters elsewhere

pp, $\sqrt{s}=$ 14 TeV, old tune, $ho_{\perp}~>~$ 12.5 GeV, $|\eta|~<~$ 1.0

- Also studied
 - Colour reconnections
 - "Cronin" effect
 - ΔR & Δφ distributions
- No "smoking-gun" signatures for rescattering
- Would any effects be visible in a full tune?

References

PYTHIA references

- "PYTHIA 6.4 Physics and Manual,"
 T. Sjöstrand, S. Mrenna and P. Z. Skands, JHEP 0605 (2006) 026
- "A Brief Introduction to PYTHIA 8.1,"
 T. Sjöstrand, S. Mrenna and P. Z. Skands, Comput. Phys. Commun. 178 (2008) 852

Model references

- "A Multiple Interaction Model for the Event Structure in Hadron Collisions,"
 - T. Sjöstrand and M. van Zijl, Phys. Rev. D 36 (1987) 2019
- "Multiple interactions and the structure of beam remnants,"
 T. Sjöstrand and P. Z. Skands, JHEP 0403 (2004) 053
- "Transverse-momentum-ordered showers and interleaved multiple interactions,"

T. Sjöstrand and P. Z. Skands, Eur. Phys. J. C 39 (2005) 129

"Multiparton Interactions and Rescattering,"
 R. Corke and T. Sjöstrand, JHEP **1001** (2010) 035

- FSR and hadronisation tuned to LEP data (H. Hoeth)
 - Already default for PYTHIA 8.125 and later
- Problems with simultaneous tuning of MB and UE

MB well described, but UE rises too fast!

- New in PYTHIA 8: FSR interleaving
 - Final-state dipoles can stretch to the initial state (FI dipole)
 - How to subdivide FSR and ISR in an FI dipole?
- \blacktriangleright Large mass \rightarrow large rapidity range for emission

In dipole rest frame

Suppress final-state radiation in double-counted region

- Also study how well the parton shower fills the phase space
 - ► Compare against 2 → 3 real matrix elements
 - Would changing the shower starting scale give better agreement?
 - Qualitatively, PS doing a good job

- Is a simultaneous MB/UE Tevatron tune now possible?
- Tunes 2C and 2M
 - CTEQ6L1 and MRST LO** PDF tunes to Tevatron data
 - Start with by-hand tune
- Compare against Pro-Q20 and Perugia 0
 - Underlying event description improved!

More plots: http://www.thep.lu.se/~richard/pythia81

- Broadly in line with previous tunes
- MRST LO** has more momentum
 - Lower α_s and higher $p_{\perp 0}^{\text{ref}}$
- Use overlap function for matter profile
 - Parameter gives handle on width of multiplicity distributions
 - Suggests slightly wider than single Gaussian
- Reduced colour reconnection

- New LHC data
 - Measurements of MB/UE at new energies!
 - Experiments appear consistent with themselves
 - But tension with older data?
- Move from NSD/INEL to INEL>0
 - Reproducible definitions!
- Diffractive description more important?
 - New framework in PYTHIA 8 for high-mass diffraction
 - "Diffraction in Pythia," S. Navin, arXiv:1005.3894 [hep-ph]
 - Based on Ingelman–Schlein picture
 - Single diffraction: Pomeron emitted from one incoming hadron interacts with incoming hadron on the other side
- Total cross sections
 - Early look at MB numbers suggest dampening diffractive cross sections?
 - New possibility to dampen rise available
 - ATLAS-CONF-2010-048: "Both PYTHIA8 and PHOJET would do slightly better in describing the data if there was an increase in the ND component"

Summary

- PYTHIA 8 MPI model
 - Well established model that has evolved over time
 - Fully interleaved with parton showers
 - Rich mix of possible underlying event processes
- Still under development
- Enhanced screening
 - Perhaps part of a solution towards lowering colour reconnections
 - More evidence to come from DIPSY?
- Rescattering
 - First model to include such effects
 - No distinctive signatures; perhaps full tune would reveal more
- Future project: *x*-dependent proton profile
- Tuning prospects
 - Simultaneous MB/UE tuning within reach
 - Initial tunes to Tevatron data
 - Impact of LHC data still uncertain
 - Article in preparation