A new Colour Reconnection model within PYTHIA

Jesper Roy Christiansen

Lund University

October 8-10, 2014 MCnet meeting

Talk overview

- Motivation
- New beam remnant model
- New colour reconnection model
- Conclusion

< E.

ъ

Motivation

- We want to introduce more of the SU(3) structure from QCD into the description
- Provide a better description of especially Λ production at hadron colliders.

(arXiv:1102.4282)

New beam remnant model

- The beam remnant model comes after the perturbative machinery
- Overall idea of the model:
 - A game of conservation laws
 - Add the minimal required amount of extra particles

- Example of two scattered gluons from a proton:

Flavour conservation

Add two up and one down quark

Baryon number conservation Turn two quarks into a diquark

Energy/momentum conservation

Choose x according to modified PDFs and rescale to match overall momentum conservation

・ロン ・四 ・ ・ ヨン ・ ヨン

New beam remnant model - colour conservation Possible colour states for the two gluons:

 $\mathbf{8}\otimes\mathbf{8}=\mathbf{27}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{1}$

Examples of the **27** and the **8** configurations:

< ロ > < 同 > < 三 > < 三

Saturation

Are the partons uncorrelated?

Included as a simple suppression: $\exp(-M/k)$, where M is the multiplet size and k is a free parameter

Comparisons to data

- Relative large x and small *p*⊥ ⇒ forward physics
- Comparison to forward TOTEM measurements.
- 10 % difference between no and maximal saturation
- The old model is similar to maximal saturation

(arXiv:1205.4105)

- ₹ 🗦 🕨

Baryon production

- The new models allow for additional production of junction structures
- Comparison between maximal saturation and no saturation as a function rapidity.
- Only directly produced particles (HadronLevel:decay = off)

(日) (同) (三) (三)

New colour reconnection model

- Colour reconnection allows us to reshuffle the colours before hadronization
- Experimentally observed in average p⊥ vs multiplicity
- New model relies on two main principles
 - SU(3) colour rules from QCD - tells us which reconnections are allowed
 - minimize \(\lambda\) measure tells us which reconnections are preferred

Possible reconnections

The λ measure

- The λ-measure is the rapidity span of a string
- For a q \overline{q} dipole: $\lambda = \log(1 + \frac{s}{2m_0^2})$
- Sum over all qq
 -, qg- and gg-dipoles to get total string length
- Add free parameter for minimum gain for junction structures (allow negative for enhancement)

Generalization of λ -measure ($s \gg m_0^2$)

$$\begin{split} \lambda &= \log(1 + \frac{s}{2m_0^2}) \Rightarrow \\ \lambda &= \log(\frac{s}{2m_0^2}) \quad (s \gg m_0^2) \Rightarrow \\ \lambda &= \log(\frac{4E_1E_2}{2m_0^2}) \text{ (restframe)} \Rightarrow \\ \lambda &= \log(\frac{\sqrt{2}E_1}{m_0}) + \log(\frac{\sqrt{2}E_2}{m_0}) \end{split}$$

Interpret as contributions from each dipole end, similar for junctions except for three legs:

$$\lambda = \log(rac{\sqrt{2}E_1}{m_0}) + \log(rac{\sqrt{2}E_2}{m_0}) + \log(rac{\sqrt{2}E_3}{m_0})$$

To handle
$$(s \sim m_0^2)$$
:
 $\log(\frac{\sqrt{2}E_1}{m_0}) \rightarrow \log(1 + \frac{\sqrt{2}E_1}{m_0})$

Additional details

- Only local minimization
- Ignore dipoles with invariant mass below m₀
- No annihilation of junctions
 Start with ordinary reconnection
- The hadronization can not handle junction connected with other junctions - need to split them up (see examples)

< 17 >

1 =

Tuning

LEP	tuning			
	par $\sigma_{P\perp}$ aLund bLund StoUD	Monash 0.335 0.68 0.98 0.217	new 0.305 0.38 0.64 0.19	

• First tune iteration, still needs several additional iterations

Comparison to LHC data

• Can describe Λ/K_s ratios (tuned)

-

< ロ > < 同 > < 三 > < 三

Distinguish new model from old model

- Observables to distinguish junction baryons from diquark baryons
- Best observable found so far can be seen on the right (again hadron decays are turned off)
- Still looking for more observables
- The difference between Monash and the diquark curve can be understood by looking at the masses of the strings

Distinguish new model from old model

- Observables to distinguish junction baryons from diquark baryons
- Best observable found so far can be seen on the right (again hadron decays are turned off)
- Still looking for more observables
- The difference between Monash and the diquark curve can be understood by looking at the masses of the strings

I DOC

Conclusion

- Only possible to distinguish new beam remnant model from old model in very forward regions
- \bullet The new colour reconnection model can be used to describe the $\Lambda\mbox{-}{\rm production}$
- Both models will be released along with PYTHIA 8.2
- Future plan:
 - Identify more observables that can distinguish junction baryons from diquark baryons
 - Apply model to the top mass measurement

• • = • • =

Jesper Roy Christiansen (Lund)

◆□>
◆□>
● =
● =
●

Baryon production

- The new models allow for additional production of junction structures
- Comparison between maximal saturation and no saturation as a function rapidity.
- Only directly produced particles (HadronLevel:decay = off)

(日) (周) (三) (三)