Colour Reconnection and Weak Showers

Jesper Roy Christiansen

Lund University

November 5, 2015 Science Coffee, Lund

JRC (Lund)

= nar

Weak showers

3

• • • • • • • •

1= 990

Motivation

- Effect of weak emissions in high p_{\perp} -jets.
- \bullet Possible to give a better description of the W/Z+jets production than the normal PS?
- Needed step to be able to recluster all PS histories in the merging/matching approach.

ELE NOR

Motivation (W/Z in high $p_{\perp} - jets$)

- Weak correction has a log enhancement of the form $\alpha_W \ln^2 \frac{\hat{s}}{M_W^2}$.
- Study the jet structure of jets with a weak boson inside it.

Motivation for including weak shower (W/Z+jets)

Why does the PS do a relative good job describing QCD jets, but not $W/Z{\rm +jets?}$

-

Implementation

- The implementation relies on ME corrections for ALL emissions.
- For FSR use the (massless) PS emission rate as overestimate:

$$\frac{\mathrm{d}\rho_{\perp \mathrm{evol}}^2}{\rho_{\perp \mathrm{evol}}^2} \frac{N\mathrm{d}z}{1-z} \qquad \mathrm{with} \ N=8$$

• For ISR use a modified shower emission rate to ensure it is an overestimate for the s-channel ME.

$$\frac{dp_{\perp evol}^2}{p_{\perp evol}^2} \frac{(1+(1+r^2)^2)dz}{1-z(1+r^2)} \qquad \text{with } r = \frac{m_W}{m_{dip}}$$

- Uses Z MEs even for W-radiation (except for coupling strength)
- Full CKM matrix for W-radiation.
- The mass of the W/Z-bosons are picked according to a Breit-Wigner distribution at each trial emission.
- The decay of the W/Z-boson is after full shower and matched to ME (e.g. $G \rightarrow u\bar{u}e^+e^-$) to get better angular distributions.

ELE NOR

Implementation (s-channel)

- All 2-to-2 processes with a $q\bar{q}$ -pair as outgoing particles uses the s-channel correction.
- The $g \to q\bar{q}, \gamma \to q\bar{q}, Z \to q\bar{q}$ and $W \to q\bar{q'}$ also uses the s-channel correction.
- Normal split of ME into ISR and FSR (i.e. no interferences included).

Validation

s-channel:

t-channel:

Di-jet Results

- Assume perfect detector and discard all events with W/Z boson.
- Effect is only of the order of 14 % even for very high p⊥ events.
- Only includes $O(\alpha_W)$ corrections to $O(\alpha_s^2)$ 2-to-2 process.
- Misses $O(\alpha_s)$ corrections to $O(\alpha_s \alpha_W)$.

= 200

Di-jet Results (100 TeV)

At what energies does the effect become important?

• To study the effect at even higher center of mass energies, we can consider a 100 TeV pp collider.

-

Z/W + jets results

- The Pythia distributions are normalized such that first bin fit the data.
- The shower starting scale is *ŝ* for Drell-Yan and p_⊥ for QCD 2 → 2.

= 200

Z/W + jets results

- The Pythia distributions are normalzied such that first bin fit the data.
- The shower starting scale is *ŝ* for Drell-Yan and p_⊥ for QCD 2 → 2.

Inclusive jet multiplicity (muon channel)

-

Conclusion

- I have described the implementation of a weak shower within Pythia.
- I have shown that the effect on exclusive di-jet production is in the region of 4 14% at 14 TeV.
- I presented a first study of jet substructure with weak radiation inside the jet, but the effect is minimal.
- I have shown that it is possible to describe inclusive Z/W + jets data only using a PS approach.

EL OQO

Colour Reconnection

ELE NOR

< □ > < ---->

Hadronization

Multiple strings

- What happens for multiple strings?
 - QCD quadropole? We have no idea how to hadronize this
 - Instead use several dipoles!
 - ► Multiple possible pairings ⇒ Colour reconnection!

ELE NOR

Multiple strings

- What happens for multiple strings?
 - QCD quadropole? We have no idea how to hadronize this
 - Instead use several dipoles!
 - ► Multiple possible pairings ⇒ Colour reconnection!

= nac

Multiple strings

- What happens for multiple strings?
 - QCD quadropole? We have no idea how to hadronize this
 - Instead use several dipoles!
 - ► Multiple possible pairings ⇒ Colour reconnection!

= 200

Motivation

Why study CR at pp colliders?

'000 GeV pp Soft QCE Average p₊ vs N_m (N_m > 2, p₊ > 0.1 GeV/c) ATLAS Pythia 8 (Def) Pythia 8 (no CR) 0.8 0.7 0.6 0.5 0.4 ATLAS_2010_S8918562 0.3 Pythia 8.176 N_{ch} Ratio to ATLAS 1.5 0.5

Why study CR right now?

< 🗇 🕨

JRC (Lund)

CR and Weak Showers

November 5, Lund 20 / 30

3

= nan

The new CR model

The new CR model reshuffles the colours just prior to hadronization based on three main principles:

- Use the SU(3) colour rules to determine if two strings are colour compatible
- Use a simplistic space-time picture to tell if the two strings coexist
- Minimize λ string-length measure to find which colour configurations Nature prefers

 Colour epsilon tensor corresponds to a junction structure

• New type of reconnection

Tests -
$$\Lambda/K_s$$
 and Ξ/Λ

- Λ/K_S is better described by the model (overall yield is tuned)
- (No rate change in $\mathrm{e^+e^-})$
- Ξ/Λ is the same as old model no strangeness enhancement

Tests - Individual p_{\perp} spectra

• Individual p_{\perp} spectra not well understood.

-

< 4 ► >

-

CR and Weak Showers

JRC (Lund)

Tests - p/π enhancement needed?

• New model predicts enhancement of protons. Experimentally needed?

• No definite answer yet.

ъ

Multiplicity dependent particle ratios

0.28 0.007 DIPSY Rope PYTHIA 8 New 0.006 DIPSY YTHIA 8 Def. $N(K)/N(\pi)$ $N(\phi)/N(K)$ 0.250.005 0.22 0.004 0.19 0.003 0.075 0.14 0.065 0.12 $N(\Lambda)/N(K)$ $N(p)/N(\pi)$ 0.055 0.10 0.045 0.08 0.035 0.06 0.120.08 0.11 0.06 $N(\Xi)/N(\Lambda)$ $N(\Omega)/N(\Xi)$ 0.10 0.04 0.09 0.02 ____0.00 100 0.08 20 60 80 100 20 40 60 80 0 40 0 N_{ch}^{fwd} (0.15 GeV < p_{\perp} , 2 < $|\eta|$ < 5)

Enhancement of hadronic flavor ratios

CR and Flow-like effects

- Flow-like effects observed in pp is potentially connected with CR
- Repeat typical HI observable: Λ/K as function of p_⊥ separated into different multiplicity intervals (or centrality)
- Qualitative similar effect seen in the model as in HI collisions

CR in $e^+e^-
ightarrow W^+W^-$

- Clean environment to test CR effects
- CR established at 2.8 σ
- Turn table around and use precision studies to constrain CR (e.g. W mass measurement, see table)
- Dedicated angular studies in fully hadronic WW
- Multiplicity comparisons between semi-leptonic and fully hadronic WW

Model	$\langle \delta \overline{m}_{ m W} angle$ (MeV)			
	170 GeV	240 GeV	350 GeV	
SK-I	+18	+95	+72	
SK-II	-14	+29	+18	
SK-II'	-6	+25	+16	
GM-I	-41	-74	-50	
GM-II	+49	+400	+369	
GM-III	+2	+104	+60	
CS	+7	+9	+4	

Table : Systematic W mass shifts at three different center-of-mass energies.

CR in $H \rightarrow W^+ W^-$

- Need to include CR as an uncertainty
- Example: Higgs Parity measurement in $WW \to q\bar{q}q\bar{q}$
 - Select events with four jets
 - Compare interjet angles using a simple χ² test
 - Compare between different CR models and different amount of CP-oddness in the Higgs
 - The analysis contains room for improvements

Conclusion

- I presented a new CR model able to describe the Λ/K_s ratio
- Identified particle ratios as a function of multiplicity is an excellent probe to test CR models
- Similarity between CR and flow-like effects in pp was presented, more studies still needed
- $\bullet~$ CR in e^+e^- collisions both provides constraints and needs to be included as an uncertainty
- All the CR models are publicly available in PYTHIA 8.210
- For more details see: arXiv:1507.02091, arXiv:1506.09085, arXiv:1505.01681

IDC I	
	Lund
	Luna
	· · ·

Tests - p_{\perp} boosts

- Expected larger boosts for heavier particles no effects for new model
- Discrepancy largest at low CM energies

-

Tests - p_{\perp} boosts

- Expected larger boosts for heavier particles no effects for new model
- Discrepancy largest at low CM energies

-

Results

How important is resummation and competition between QCD and weak emissions?

I= nan

CR and Weak Showers

Implementation (t-channel)

- s-channel ME for t-channel processes → does not work, instead need correct ME for t-channel.
- Three different cases: $ug \rightarrow ugZ$, $ud \rightarrow udZ$, $uu \rightarrow uuZ$.

• Split between ISR and FSR done by multiplying with:

ISR:
$$\frac{\frac{1}{(p_a - p_3)^2}}{\frac{1}{(p_a - p_3)^2} + \frac{1}{(p_1 + p_3)^2}}$$
 and FSR: $\frac{\frac{1}{(p_1 + p_3)^2}}{\frac{1}{(p_a - p_3)^2} + \frac{1}{(p_1 + p_3)^2}}$

- For $ug \rightarrow ugZ$ it is trivial to identify the radiating quark.
- For $ud \rightarrow udZ$, the ME used was with the d-Z coupling set to zero.
- For uu → uuZ, the same ME as for ud → udZ was used. Need to figure out which incoming u quark correspond to which outgoing u quark. This is done by comparing t̂ and û̂ in the 2-to-2 process.

JIN NOR

t-channel validation

- Comparison of *uu* → *uuZ* between Pythia and CalcHep
- $p_{\perp}(u) > 1000 \text{ GeV}$, M(u, u) > 1500 GeV and fixed scales at m_Z
- PS is not always an overestimate of the ME.

Results

What is the effect on resummation and competition at higher energies?

-

< 🗇 🕨 🔸

.∃ >

CR and Weak Showers

JRC (Lund)

Jet substructure

- Calculate invariant mass of sub jets inside jet with R = 1 and $p_{\perp} > 1$ TeV.
- Sub jets found by using trimming and are required to have $p_{\perp} > 50 \text{GeV}$ and $R_{trim} = 0.2$.

ELE NOR

Jet substructure (II)

- Is it possible to see the effect of weak emissions inside the jet?
- Only statistical MC errors are shown.
- 1 million events \sim 77 fb⁻¹

