Predicting strangeness yields in small and large systems with PYTHIA8/Angantyr

Smita Chakraborty With Christian Bierlich, Gösta Gustafson, Leif Lönnblad

Lund University

12th International workshop on Multiple Partonic Interactions at the LHC 11th October, 2021

- Aim: Observing Quark Gluon Plasma signatures within the Lund string model (PYTHIA and ANGANTYR)
- We want to observe:
 - Imprint of initial geometric anisotropy in the final state particles
 - \implies correlation between particles separated in large units of rapidity
 - Modification of large Q^2 processes in small and large systems
 - \implies Jet quenching &
 - \implies Change in production yields of heavy flavours, e.g. strange and charm, hadrons

Inclusion of string interactions

- $\checkmark~$ In transverse coordinate space $\implies~$ rope hadronization
- $\checkmark\,$ In colour space $\,\Longrightarrow\,$ colour reconnection, colour swing
- $\checkmark\,$ In 3 dimensional coordinate space $\implies\,$ string shoving

QGP signatures

Final-state collective effects Jet quenching Strangeness enhancement Underlying mechanisms
 String shoving
 Colour reconnection
 Rope hadronization

Other mechanisms at work: Hadronic rescattering in $\ensuremath{\operatorname{PYTHIA}}$

 \Rightarrow

Implementations till date: ANGANTYR, shoving & ropes

[†]Bierlich, et al., J. High Energ. Phys. 2018, 134 (2018), ^{*}Bierlich, et al., Phys.Lett.B 779 (2018) 58-63, [‡]Bierlich, et al., J. High Energ. Phys. 2015, 148 (2015)

Smita Chakraborty (Lund Univ.)

String shoving: Gaussian colour field and interaction force

A string of radius R will have a colour electric field of the Gaussian nature:

$$E(r_{\perp}) = C \exp\left(-rac{r_{\perp}^2}{2R^2}
ight)$$

Corresponding force $f(d_{\perp})$ per unit length between two such strings will be:

$$f(d_{\perp}) = rac{dE_{int}}{dd_{\perp}} = rac{g\kappa d_{\perp}}{R^2} exp\left(-rac{d_{\perp}^2(t)}{4R^2}
ight)$$

where $E_{int} = \int [(E_1 + E_2)^2 - E_1^2 - E_2^2]$ and g is a tunable parameter($\sim \mathcal{O}(1)$).

[†]Bierlich C., Gustafson G., Lönnblad L., Collectivity without plasma in hadronic collisions, Phys.Lett.B 779 (2018) 58-63

Strings in the parallel frame

With two constraints in string evolution: maximum width R_0 and hadronization time τ_{Had}

(a) Parallel frame with opening angle θ and skewness angle ϕ (b) Evolution of string width in the parallel frame [†]Bierlich, C., Chakraborty, S., Gustafson, G. et al. Setting the string shoving picture in a new frame, J. High Energ. Phys. 2021, 270 (2021)

Smita Chakraborty (Lund Univ.)

v_2 {2} in Pb-Pb with shoving & rescattering

At $\sqrt{s_{NN}} = 5.02$ TeV, (left) $v_2\{2\}$ vs. centrality with only string shoving $g = 0.5^{\dagger}$, (right) $v_2\{2\}$ vs. $\langle N_{ch} \rangle$ with only rescattering[‡] (See talk by Marius Utheim on Monday afternoon)

 * Bierlich, et. al., J. High Energ.
 Phys. 2021, 270 (2021), * Bierlich, et. al., Eur.Phys.J.A 57 (2021) 7, 227.

 Smita Chakraborty (Lund Univ.)
 String interactions in PYTHIA8
 MPI@LHC, 11th October, 2021 6/14

Motivation

- $\circ~$ To capture the essence of wider colour flux tubes when two strings are close in the transverse co-ordinate space
- $\circ~{\rm Resultant}$ higher effective string tension $\kappa_{\it eff}$
- $\circ~$ Higher yield of strange quarks \rightarrow strangeness enhancement

First implementation in DIPSY , with subsequent Pythia hadronization

- $\checkmark~$ Stacking of strings to form a rope
- $\checkmark\,$ Formation of higher colour multiplets at the ends of colour dipoles
- $\checkmark\,$ Hadronization occurs for each string separately in the MC implementation

[†]Bierlich C., Gustafson G., Lönnblad, L. et al. Effects of overlapping strings in pp collisions, J. High Energ. Phys. 2015, 148 (2015)

- $\circ\,$ A SU(3) multiplet can be specified by two quantum numbers p and q
- \circ A state corresponds to *p* coherent triplets + *q* coherent antitriplets

- Corresponding multiplicity is given by

$$N = \frac{1}{2}(p+1)(q+1)(p+q+2)$$

[†]Bierlich C., Gustafson G., Lönnblad, L. et al., J. High Energ. Phys. 2015, 148 (2015).

Smita Chakraborty (Lund Univ.)

- $\circ\,$ From lattice calculations: Tension in an isolated static rope is proportional to the quadratic Casimir operator C_2
- $\circ~$ Relative strength of the "rope tension"

$$C_2(p,q)/C_2(1,0) = rac{1}{4}(p^2 + pq + q^2 + 3p + 3q)$$

 $\circ~$ For breakup via the transition $\{p+1,q\} \rightarrow \{p,q\}.$

effective string tension $\kappa_{eff}=rac{2p+q+4}{4}\kappa$

[†]Bierlich C., Gustafson G., Lönnblad, L. et al., J. High Energ. Phys. 2015, 148 (2015).

Smita Chakraborty (Lund Univ.)

PRELIMINARY RESULTS

I: pp 13 TeV, p-Pb 5.02 TeV and Pb-Pb 2.76 TeV strangeness yields with $\rm MONASH$ tune

II: Strangeness in Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV with MONASH tune

(Left) K^{*0} and (right) $\Phi(1020)$ yields vs. centrality.

[†]ALICE collaboration, K^{*0} and $\Phi(1020)$ production in Pb-Pb collisions at 2.76 TeV, Phys.Rev.C 91 (2015) 024609, 2015.

III: Strangeness in jets p-p in PYTHIA8 with MonAsh tune

Anti-k $_{\perp}$ R=0.4, $p_{\perp,jet}$ > 10 GeV/c, $|\eta_{jet}|$ < 2.1, $|\eta_{particle}|$ < 1.9, $\Delta\Phi_{jet,particle}$ > $2\pi/3$

IV: Strangeness in jets p-Pb in PYTHIA8/Angantyr with MonASH tune

Similarly, the analysis can be done in A-A systems \rightarrow ongoing work. Wanted: Rivet analyses for strangeness in jets for p-A and A-A

Smita Chakraborty (Lund Univ.)

Summary

- Conclusions from the performance so far:
 - Better description of strangeness production in high-multiplicity p-p with new implementation of rope hadronization and string shoving
 - Novelty: parallel frame \rightarrow jet analyses possible
 - Novelty: parallel frame \rightarrow string interactions in all systems for both min-bias and jetty events
 - Required: tuning to p-p data with new implementation
- Outlook:
 - $\circ~$ Upcoming in Angantyr and Pythia8: GLEIPNIR module
 - $\checkmark\,$ Implementation of string shoving and rope hadronization in the parallel frame
 - $\checkmark\,$ Generation of heavy-ion events with jet trigger including string interactions

BACKUP

Profile of the electric field from the lattice calculation 1 compared to the fit by ${\sf Clem}^2$ and a Gaussian distribution

1. Baker, M., Cea, P., Chelnokov, V. et al. The confining color field in SU(3) gauge theory. Eur. Phys. J. C 80, 514 (2020).

$v_2\{2\}$ vs. pT for pp $\sqrt{s}=13$ TeV

 v_2 {2} versus p_{\perp} in high multiplicity events. Data from pp collisions at 13 TeV¹

^{1.} CMS collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765(2017) 193 [arXiv:1606.06198]

$v_2\{8\}$ vs. N_{ch} for Pb-Pb at 5.02 TeV

