String shoving effects on jets in pp collisions in PYTHIA8

Smita Chakraborty¹ With Christian Bierlich^{1,2}, Gösta Gustafson¹, Leif Lönnblad¹

¹Lund University ²Niels Bohr Institute

10th International Conference on Hard and Electromagnetic Probes in High-Energy Nuclear Collisions 2nd June 2020

- Explanation of possible collective effects in high multiplicity p-p collisions with string model
- 2 Is there any jet quenching in high multiplicity p-p events? Explanation in string model?
- **③** String model to study A-A systems
- **4** Quest for a unified model: from $e^+ e^-$ to A-A collision systems

Angantyr and advancements

- Aspects of Angantyr:
 - \checkmark A-A is treated as a collection of overlaid p-p collisions
 - \checkmark Modifications needed when one nucleon in one nucleus collides with several nucleons in the other

 \checkmark No collective effects

The elliptic flow coefficient v_2 {2} at $\sqrt{s_{NN}} = 2.76 TeV$, as measured by CMS (without $\Delta \eta$ -gap) and ALICE (with $\Delta \eta = 1$), compared to the non-flow contribution calculated by Angantyr

Bierlich, et al., J. High Energ. Phys. 2018, 134 (2018)

Smita Chakraborty (Lund Univ.)

PYTHIA8:String shoving in jets

- Aspects of Angantyr:
 - \checkmark A-A is treated as a collection of overlaid p-p collisions

 \checkmark Modifications needed when one nucleon in one nucleus collides with several nucleons in the other

 \checkmark No collective effects

Signatures

Final-state collective effects Jet quenching Strangeness enhancement

*Bierlich et al. J. High Energ. Phys. 2015, 148 (2015)

Smita Chakraborty (Lund Univ.)

PYTHIA8:String shoving in jets

 \Rightarrow

Steps involved in implementing string shoving (for massless partons):

- Symmetric topology for strings → Parallel frame
- **2** Giving strings width \rightarrow calculate interaction force
- **③** Push distribution among hadrons

1 A string of width R:

Field
$$E(r_{\perp}) = C \exp\left(-rac{r_{\perp}^2}{2R^2}
ight)$$

(1)

(2)

2 Force $f(d_{\perp})$ per unit length:

$$f(d_{\perp}) = rac{dE_{int}}{dd_{\perp}} = rac{g\kappa d_{\perp}}{R^2} exp\left(-rac{d_{\perp}^2(t)}{4R^2}
ight)$$

where g is a tunable parameter.

Bierlich et. al., Physics Letters B, Volume 779, 10 April 2018

Smita Chakraborty (Lund Univ.)

PYTHIA8:String shoving in jets

1. Lorentz invariant frame - the parallel frame

Figure: 1,2,3,4 are partons(string-ends), θ = opening angle, ϕ = skew angle. **Left**: view from above. **Right**: Schematic view of two strings in the parallel frame

Role of parallel frames in jets

- \bullet Jets \rightarrow quarks and gluons
- Interaction with partons following rule of least string length \rightarrow modifies jets

3. 'Push' distribution among hadrons

• t_1 is earliest and t_5 is the latest time

• String extends in the longitudinal direction along x and the shoving kink is along y

- Kink extends over *t_i*
- String breaks following fragmentation function and the push is distributed following energy-momentum conservation

- Eg. a kink produced at t₂ will spread in a lightcone
- The hadrons produced in this lightcone will carry the pT push in a way such that they keep moving along their original pseudorapidity

PRELIMINARY RESULTS

1
$$S_N = rac{1}{N(N-1)} rac{d^2 N^{signal}}{d\Delta \phi d\Delta \eta}$$

2 $B_N = \frac{1}{N^2} \frac{d^2 N^{mixed}}{d\Delta \phi d\Delta \eta}$

3
$$\mathsf{R}(\phi) = \left\langle (\langle N \rangle - 1) \left(\frac{S_N}{B_N} - 1 \right) \right\rangle$$

where <N> is the number of tracks per event averaged over the multiplicity bin, and the final $R(\Delta\eta, \Delta\phi)$ is found by averaging over multiplicity bins

Analysis follows from: CMS Collaboration, J. High Energ. Phys. 2010, 91 (2010)

Set 1: Di-hadron correlations in p-p at 7 TeV at minbias

Di-hadron correlations in p-p at 7 TeV at minbias

CMS collaboration. J. High Energ. Phys. 2010, 91 (2010)

Smita Chakraborty (Lund Univ.)

PYTHIA8:String shoving in jets

Set 2: Charged hadron correlation in p-p at 7 TeV

- 1 Pick charged hadron in $|\Delta \eta| < 2.4$ with 6 GeV $< p_T < 8$ GeV
- 2 Pick associated charged hadron in $|\Delta \eta| < 2.4$ with 4 GeV $< p_T < 6$ GeV

4 No background subtraction performed

Set 2: Charged hadron correlation in p-p at 7 TeV for g=0.5

Set 2: Charged hadron correlation in p-p at 7 TeV for g=5

Set 2: Charged hadron correlation in p-p at 7 TeV for g=5

effects

Set 3: v_2 in Pb-Pb at 5.02 TeV

- Example case in Pb-Pb: initial state with long parallel strings
- Calculate force on a string cutting through such an environment
- Calculate v₂

* Christian Bierlich's plenary talk on Wednesday

Smita Chakraborty (Lund Univ.)

Set 4: Two particle correlations in $e^+ - e^-$ at 91 GeV

- Applicable to all systems: the parallel frame allows shoving in e^+e^- geometries
- Recent re-analysed ALEPH data is important for cross checks

- Possibility of dedicated predictions for more elaborate observables
- Opportunities for FCC-ee with more statistics
- Wanted: Rivet implementation of analyses with archived data

1 Summary:

- Parallel frame formalism extends the baseline to study jets including string interactions
- Space-time dependent string width gives better grip in calculation of interaction force
- Shoving gives an observable collective effect in high multiplicity p-p
- Two particle correlations in high-pT hadrons do not predict any suppression in jets in string interaction picture
- **2** Coming soon:
 - Shoving in p-A and A-A systems
 - Jet observable analysis for p-A and A-A systems

EXTRAS

Di-hadron correlations in p-p at 7 TeV

CMS collaboration. J. High Energ. Phys. 2010, 91 (2010)

Di-hadron correlations in p-Pb

CMS collaboration, Physics Letters B, Volume 718, Issue 3, 2013

Di-hadron correlations in p-Pb

CMS collaboration, Physics Letters B, Volume 718, Issue 3, 2013

Di-hadron correlations in p-Pb

CMS collaboration, Physics Letters B, Volume 718, Issue 3, 2013