New applications of dipole Monte Carlo implementations

Christian Bierlich, bierlich@thep.lu.se Lund University
Sep 25th, 2020, BNL Nuclear Theory Seminar

Introduction

- Everywhere we look, we find heavy ion behavior!
- Monte Carlos for pp physics have had:

1. No space-time structure.
2. No heavy ion collisions.
3. No collective effects.

- And that was a problem!

At least do enough for a non-QGP baseline.
*. But if it works, how far can we go?

The key differences between standard approaches

- Standard MC approach: Matrix element, parton shower + string hadronization.
- Note different time-scales.

(Figure: D. D. Chinellato)

Outline

- Initial state geometry with Monte Carlo.

1. From Mueller dipoles to event geometry.
2. Fluctuating cross sections.
3. Towards EIC.

- Matching to a multi-parton interactions.

1. Pythia and the Angantyr model.
2. Fluctuations in parton level geometry.

- From geometry to collectivity.

1. The string shoving model.
2. Shoving and Angantyr.
3. Response to geometry.

Mueller dipole initial states

The aim and the means

A reasonable calculation of initial state geometry.
Fluctuating nucleon-nucleon cross sections.
MC implementation of Mueller dipoles.

- Projectile and target cascades evolved for each event.
- Formalism in impact parameter and rapidity.
- Single-event spatial structure.

A step back, BFKL, B-JIMWLK and all that...

- Start with Mueller dipole branching probability:

$$
\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} y}=\mathrm{d}^{2} \vec{r}_{3} \frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{r_{12}^{2}}{r_{13}^{2} r_{23}^{2}} \equiv \mathrm{~d}^{2} \vec{r}_{3} \kappa_{3} .
$$

- Evolve any observable $O(y) \rightarrow O(y+\mathrm{d} y)$ in rapidity:

$$
\begin{aligned}
\bar{O}(y+\mathrm{d} y) & =\mathrm{d} y \int \mathrm{~d}^{2} \vec{r}_{3} \kappa_{3}\left[O\left(r_{13}\right) \otimes O\left(r_{23}\right)\right]+O\left(r_{12}\right)\left[1-\mathrm{d} y \int \mathrm{~d}^{2} \vec{r}_{3} \kappa_{3}\right] \\
& \rightarrow \frac{\partial \bar{O}}{\partial y}=\int \mathrm{d}^{2} \vec{r}_{3} \kappa_{3}\left[O\left(r_{13}\right) \otimes O\left(r_{23}\right)-O\left(r_{12}\right)\right]
\end{aligned}
$$

A powerful formalism!

- Example: S-matrix (eikonal approximation, b-space):

$$
O\left(r_{13}\right) \otimes O\left(r_{23}\right) \rightarrow S\left(r_{13}\right) S\left(r_{23}\right)
$$

- Change to $T \equiv 1-S$:

$$
\frac{\partial\langle\bar{T}\rangle}{\partial y}=\int \mathrm{d}^{2} \vec{r}_{3} \kappa_{3}\left[\left\langle T_{13}\right\rangle+\left\langle T_{23}\right\rangle-\left\langle T_{12}\right\rangle-\left\langle T_{13} T_{23}\right\rangle\right]
$$

- B-JIMWLK equation, but could be written with other observables.
- Example: Average dipole coordinate ($\langle z\rangle$):

$$
\frac{\partial \overline{\langle z\rangle}}{\partial y}=\int \mathrm{d}^{2} \vec{r}_{3} \kappa_{3}\left(\frac{1}{3} z_{3}-\frac{1}{6}\left(z_{1}+z_{2}\right)\right) .
$$

Monte Carlo implementation

Drawbacks to analytic approach

Involved observables are hard!
Not obvious how to include sub-leading effects.
Not obvious how to treat exclusive final states.

- The MC way is a tradeoff: formal precision vs. pragmatism.
- Get for free: Rest of the MC infrastructure.
- Practically a parton shower-like implementation.
- Step 1: Modify splitting kernel with Sudakov:

$$
\frac{\mathrm{d} \mathcal{P}}{\mathrm{dy} \mathrm{~d}^{2} \vec{r}_{3}}=\frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{r_{12}^{2}}{r_{13}^{2} r_{23}^{2}} \exp \left(-\int_{y_{\min }}^{y}{\mathrm{~d} y \mathrm{~d}^{2} \vec{r}_{3}}^{N_{c} \alpha_{s}} 2 \pi^{2} \frac{r_{12}^{2}}{r_{13}^{2} r_{23}^{2}}\right)
$$

- Winner-takes-it-all algorithm generates emission up to maximal rapidity.
- Throws away the non-linear term in the cascade.

Colliding dipole chains \& unitarity

- Have: Evolved dipole chain á la BFKL.
- Dipole cross section in large- N_{c} limit (consistency with evolution):

- Unitarized scattering amplitude: $T(\vec{b})=1-\exp \left(-\sum_{i j} f_{i j}\right)$

Effects beyond leading log

Some details

A dipole has a rapidity y, and a p_{\perp} related to its size $p_{\perp} \hbar / r$. Thus its lightcone momenta is $p_{ \pm}=p_{\perp} \exp (\pm y)$.

- Energy-momentum conservation from bounded p_{-}translate to upper bound on dipole sizes.
- Running α_{s} : Easily included per-splitting.
- Non-eikonal effects: recoil distributed on emitters in p_{+}, p_{\perp}, and thus also y.
- Confinement: Explicit confinement scale (or fictitious gluon mass) entering evolution and collision.
- Unitarized scattering amplitude resums $1 / N_{c}^{2}$ terms in interaction, equivalent to multi-pomeron exchanges in interaction frame.

Example: confinement \rightarrow hot-spots

- MC makes it easy to switch physics effects on and off.
- More activity around end-points: Hot-spots!
- Initial triangle by hand. Less important at high energies, but deserves more thought.

(a)

(b)

Example: confinement \rightarrow hot-spots

- MC makes it easy to switch physics effects on and off.
- More activity around end-points: Hot-spots!
- Initial triangle by hand. Less important at high energies, but deserves more thought.

- Dynamically generated!

Good-Walker \& cross sections

- Cross sections from $T(\vec{b})$ with normalizable particle wave functions:

$$
\begin{aligned}
\sigma_{\text {tot }}=2 \int \mathrm{~d}^{2} \vec{b} \Gamma(\vec{b}) & =2 \int \mathrm{~d}^{2} \vec{b}\langle T(\vec{b})\rangle_{p, t} \\
\sigma_{\mathrm{el}}=\int \mathrm{d}^{2} \vec{b}|\Gamma(\vec{b})|^{2} & =\int \mathrm{d}^{2} \vec{b}\langle T(\vec{b})\rangle_{p, t}^{2} \\
B_{\mathrm{el}}=\left.\frac{\partial}{\partial t} \log \left(\frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right)\right|_{t=0} & =\frac{\int \mathrm{d}^{2} \vec{b} b^{2} / 2\langle T(\vec{b})\rangle_{p, t}}{\int \mathrm{~d}^{2} \vec{b}\langle T(\vec{b})\rangle_{p, t}}
\end{aligned}
$$

- Or with photon wave function:
$\sigma^{\gamma^{*} \mathrm{p}}(s)=\int_{0}^{1} \mathrm{~d} z \int_{0}^{r_{\text {max }}} r \mathrm{~d} r \int_{0}^{2 \pi} \mathrm{~d} \phi\left(\left|\psi_{L}(z, r)\right|^{2}+\left|\psi_{T}(z, r)\right|^{2}\right) \sigma_{\mathrm{tot}}(z, \vec{r})$

Model parameters

- This means that all parameters (4) can be tuned to cross sections

- Could constrain better in ep with eg. vector meson production.

Model parameters II

- Same parameters should describe pp, adds more data to the tuning.

- Not as good as dedicated (Regge-based) models.
- Accuracy not the point, control of physics features is!

Cross section colour fluctuations

- Cross section fluctuates event by event: important for $\mathrm{p} A, \gamma^{*} A$ and less $A A$.
- Projectile remains frozen through the passage of the nucleus.
- Consider fixed state (k) projectile scattered on single target nucleon:

$$
\begin{gathered}
\Gamma_{k}(\vec{b})=\left\langle\psi_{s} \mid \psi_{I}\right\rangle=\left\langle\psi_{k}, \psi_{t}\right| \hat{T}(\vec{b})\left|\psi_{k}, \psi_{t}\right\rangle= \\
\left(c_{k}\right)^{2} \sum_{t}\left|c_{t}\right|^{2} T_{t k}(\vec{b})\left\langle\psi_{k}, \psi_{t} \mid \psi_{k}, \psi_{t}\right\rangle= \\
\left(c_{k}\right)^{2} \sum_{t}\left|c_{t}\right|^{2} T_{t k}(\vec{b}) \equiv\left\langle T_{t k}(\vec{b})\right\rangle_{t}
\end{gathered}
$$

- And the relevant amplitude becomes $\left\langle T_{t_{i}, k}^{\left(n N_{i}\right)}\left(\vec{b}_{n i}\right)\right\rangle_{t}$

Fluctuating nucleon-nucleon cross sections

- Let nucleons collide with total cross section $2\langle T\rangle_{p, t}$
- Inserting frozen projectile recovers total cross section.
- Consider instead inelastic collisions only (color exchange, particle production):

$$
\frac{\mathrm{d} \sigma_{\text {inel }}}{\mathrm{d}^{2} \vec{b}}=2\langle T(\vec{b})\rangle_{p, t}-\langle T(\vec{b})\rangle_{p, t}^{2}
$$

- Frozen projectile will not recover original expression, but requre target average first.

$$
\frac{\mathrm{d} \sigma_{w}}{\mathrm{~d}^{2} \vec{b}}=2\left\langle T_{k}(\vec{b})\right\rangle_{p}-\left\langle T_{k}^{2}(\vec{b})\right\rangle_{p}=2\langle T(\vec{b})\rangle_{t, p}-\left\langle\langle T(\vec{b})\rangle_{t}^{2}\right\rangle_{p}
$$

- Increases fluctuations! But pp can be parametrized.

EIC adds more complications

- For $\gamma^{*} A$ collisions the trick can be repeated.
- But photon wave function collapse to previous result at first hit.

$$
\frac{\mathrm{d} \sigma_{w}}{\mathrm{~d}^{2} \vec{b}}=\int \mathrm{d} z \int \mathrm{~d}^{2} \vec{r}\left(\left|\psi_{L}(z, \vec{r})\right|^{2}+\left|\psi_{T}(z, \vec{r})\right|^{2}\right)\left(2\langle T(\vec{b})\rangle_{t, p}-\left\langle\langle T(\vec{b})\rangle_{t}^{2}\right\rangle_{p}\right)
$$

Drastic for number of wounded nucleons

- More multi-hit events, meaning more background.
- Clearly non-negligible, lesson already learned in p-Pb at LHC.

The story so far

- Mueller dipole MC for fluctuations and impact parameter space.
- Drastic consequenses for wounded nucleons.
- Must be coupled to particle production.
- ...and to initial spatial parton density.

Detour: MPIs in PYTHIA8 pp

- Several partons taken from the PDF.
- Hard subcollisions with $2 \rightarrow 2$ ME:

Figure T. Sjöstrand

$$
\frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)}{\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)^{2}} .
$$

- Momentum conservation and PDF scaling.
- Ordered emissions: $p_{\perp 1}>p_{\perp 2}>p_{\perp 4}>\ldots$ from:

$$
\mathcal{P}\left(p_{\perp}=p_{\perp i}\right)=\frac{1}{\sigma_{n d}} \frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}} \exp \left[-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{1}{\sigma_{n d}} \frac{d \sigma}{d p_{\perp}^{\prime}} d p_{\perp}^{\prime}\right]
$$

- Picture blurred by CR, but holds in general.

Angantyr - the Pythia heavy ion model (cB, c. Gustrom, L. Lömbladi

```
arXiv:1607.04434, += Shah: arXiv:1806.10820)
```

- Pythia MPI model extended to heavy ions since v. 8.235.

1. Glauber geometry with Gribov colour fluctuations.
2. Attention to diffractive excitation \& forward production.
3. Hadronize with Lund strings.

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$\frac{d N}{d \eta}=F(\eta)$
(single wounded nucleon
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$$
\begin{equation*}
\frac{d N}{d \eta}=F(\eta)+F(-\eta) \tag{pp}
\end{equation*}
$$

- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$\frac{d N}{d \eta}=w_{t} F(\eta)+\quad F(-\eta)$
(pA)
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$\frac{d N}{d \eta}=w_{t} F(\eta)+w_{p} F(-\eta)$
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Some results - pPb

- Centrality measures are delicate, but well reproduced.
- So is charged multiplicity.

Direct dipole fluctuations

- Comparison between direct calculation (slow), and parametrized (fast).

Basic quantities in AA

- Reduces to normal Pythia in pp. In pA in AA:

1. Good reproduction of centrality measure.
2. Particle density at mid-rapidity.

- Geometric quantities from matching to dipole calculations coming up.

Parton vertices

- Parton vertices assigned according to dipole calculation.
- Cannot be done from first principles!

Priniciples of vertex assignments

\diamond Dipole cascade branches go on-shell iff colliding with another.
\diamond Partonic sub-collisions ordered in importance, i.e. contribution to cross section.
\diamond Further emissions by parton shower smears and recoils with a Gaussian.

- Default model, for comparison, is proton mass distribution $=$ 2D Gaussian.

Eccentricities

- Initial state anisotropy quantified:

$$
\epsilon_{n}=\frac{\sqrt{\left\langle r^{2} \cos (n \phi)\right\rangle^{2}+\left\langle r^{2} \sin (n \phi)\right\rangle^{2}}}{\left\langle r^{2}\right\rangle}
$$

- ...and the usual higher moments.
- Beware infrared safety! $\rightarrow p_{\perp} /\left(p_{\perp}+p_{\perp, \min }\right)$

Could differences be measured?

- Differences visible, but $\mathrm{p}-\mathrm{Pb}$ might be the best!

- NSC correlated flow coefficients, and scale out the magnitude.
- For p-Pb: Only negative in dipole picture.

Adding transport to final state

- The left side has now been established.
- Emphasis on colour fluctuations, forward production and partonic vertices.
- Rest of the talk: Transporting anisotropy to final state.

(Figure: D. D. Chinellato)

Microscopic final state collectivity

- Proposal: Model microscopic dynamics with interacting Lund strings
- Additional input fixed or inspired by lattice, few tunable parameters.

Microscopic final state collectivity

- Proposal: Model microscopic dynamics with interacting Lund strings
- Additional input fixed or inspired by lattice, few tunable parameters.
$\tau \approx 0 \mathrm{fm}$: Strings no transverse extension. No interactions, partons may propagate.
$\tau \approx 0.6 \mathrm{fm}$: Parton shower ends. Depending on "diluteness", strings may shove each other around.
$\tau \approx 1 \mathbf{f m}$: Strings at full transverse extension. Shoving effect maximal.
$\tau \approx 2 \mathrm{fm}$: Strings will hadronize. Possibly as a colour rope.
$\tau>2 \mathrm{fm}$: Possibility of hadronic rescatterings.

Microscopic final state collectivity

- Proposal: Model microscopic dynamics with interacting Lund strings
- Additional input fixed or inspired by lattice, few tunable parameters.
$\tau \approx 0 \mathrm{fm}$: Strings no transverse extension. No interactions, partons may propagate.
$\tau \approx 0.6 \mathrm{fm}$: Parton shower ends. Depending on "diluteness", strings may shove each other around.
$\tau \approx 1 \mathbf{f m}$: Strings at full transverse extension. Shoving effect maximal.
$\tau \approx 2 \mathrm{fm}$: Strings will hadronize. Possibly as a colour rope.
$\tau>2 \mathrm{fm}$: Possibility of hadronic rescatterings.

The cartoon picture

- Strings push each other in transverse space.
- Colour-electric fields \rightarrow classical force.

Transverse-space geometry.
(1) Particle production mechanism.
?? String radius and shoving force

MIT bag model, dual superconductor or lattice?

- Easier analytic approaches, eg. bag model:
$\kappa=\pi R^{2}\left[\left(\Phi / \pi R^{2}\right)^{2} / 2+B\right]$
- Bad $R 1.7$ and dual sc. 0.95 respectively, shape of field is input.
- Lattice can provide shape, but uncertain R.

- Solution: Keep shape fixed, but R ballpark-free.

The shoving force

- Energy in field, in condensate and in magnetic flux.
- Let g determine fraction in field, and normalization N is given:

$$
E=N \exp \left(-\rho^{2} / 2 R^{2}\right)
$$

- Interaction energy calculated for transverse separation d_{\perp}, giving a force:

$$
f\left(d_{\perp}\right)=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}}{4 R^{2}}\right)
$$

Monte Carlo details

- Distance d_{\perp} calculated in a frame where strings lie in parallel planes.
- Everything is two-string interactions.
- The shoving action implemented as a parton shower (again!)
- Push propagated along string, and distributed on final state hadrons.

Directly: varying results

- Results are ok in pp, but off in AA.
- This is with the full initial state machinery = many things can go wrong.

Simpler toy initial state

- Problematic: many soft gluons in final state.
- Corrections to string hadronization, saturation scale...
- Set up toy system of straight strings, study response to geometry.

Fixed density close to reality

- Choose array of fixed densities, insert long strings, and calculate v_{n} :

$$
v_{n}=\left\langle\cos \left(n\left(\phi-\Psi_{n}\right)\right), \Psi_{n}=\frac{1}{n} \arctan \left(\frac{\left\langle p_{\perp} \sin (n \phi)\right\rangle}{\left\langle p_{\perp} \cos (n \phi)\right\rangle}\right)\right.
$$

- Closer to data is nice, gives a path forward.

Scaling with initial eccentricity

Critical density? Critical for what?

Eccentricity vs. v_{2}, all centralities $\rho=2 \mathrm{fm}^{-2}$

Eccentricity vs. v_{2}, all centralities $\rho=20 \mathrm{fm}^{-2}$

Eccentricity vs. v_{2}, all centralities $\rho=12 \mathrm{fm}^{-2}$

Eccentricity vs. v_{2}, all centralities $\rho=30 \mathrm{fm}^{-2}$

Better: Rescaled variables

$$
\delta \epsilon_{2}=\frac{\epsilon_{2}-\left\langle\epsilon_{2}\right\rangle}{\left\langle\epsilon_{2}\right\rangle} \text { and } \delta v_{2}=\frac{v_{2}-\left\langle v_{2}\right\rangle}{\left\langle v_{2}\right\rangle}
$$

- Scaling like hydro for large densities.
- ...but more fluctuations for low densities!

Summary: Dipoles and string interactions

- Mueller dipoles for geometry and IS fluctuations.
- Mapping to Pythia/Angantyr for particle production.
- Angantyr $=\mathrm{p}-\mathrm{A}$ and AA final states, eA are coming.
- Huge opportinity: Control geometry and density at EIC.
- String shoving: interactions to generate transverse pressure.
- Interface to Angantyr still not perfect.
- Behaves like hydro in simple, high-density systems.

> Thank you for the invitation!
> Exciting times are still ahead!

