Hadrochemistry and flow from PYTHIA's point of view

Christian Bierlich, bierlich@thep.lu.se
University of Copenhagen
Lund University
June 29th, 2020, ALICE topical group 8 meeting

Introduction

- Small systems collectivity is becoming precision physics!
- Models are plentiful, detailed knowledge needed to falsify:
- On th. side: Detailed knowledge about experimental conditions (triggers, particle definitions, centrality definitions, "what is a cumulant?" ...).
- On exp. side: What is the physics content of the models, how do they differ? ("Pythia with color reconnection explains it...").

Pythia perspective

- Not one, but several models strung together!
- Underlying models $!=$ Pythia implementation.
- Pythia has no Quark-Gluon Plasma.
- This talk: hadrochemistry and flow, the physics content.

1. MPIs and color reconnections.
2. Rope hadronization.
3. String shoving.
4. The importance of the initial state.

MPIs in PYTHIA8 pp (sfostrand and Skands: arxivithep-ph/0402078)

- Several partons taken from the PDF.
- Hard subcollisions with $2 \rightarrow 2$ ME:

Figure T. Sjöstrand

$$
\frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)}{\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)^{2}} .
$$

- Momentum conservation and PDF scaling.
- Ordered emissions: $p_{\perp 1}>p_{\perp 2}>p_{\perp 4}>\ldots$ from:

$$
\mathcal{P}\left(p_{\perp}=p_{\perp i}\right)=\frac{1}{\sigma_{n d}} \frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}} \exp \left[-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{1}{\sigma_{n d}} \frac{d \sigma}{d p_{\perp}^{\prime}} d p_{\perp}^{\prime}\right]
$$

- Picture blurred by CR, but holds in general.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

Light flavour determination

$$
\rho=\frac{\mathcal{P}_{\text {strange }}}{\mathcal{P}_{\text {u or d }}}, \xi=\frac{\mathcal{P}_{\text {diquark }}}{\mathcal{P}_{\text {quark }}}
$$

Related to κ by Schwinger equation.

Color reconnection? What's that?

- Many partonic subcollisions \Rightarrow Many hadronizing strings.
- But! $N_{c}=3$, not $N_{c}=\infty$ gives interactions.
- Easy to merge low- p_{\perp} systems, hard to merge two hard- p_{\perp}.

$$
\mathcal{P}_{\text {merge }}=\frac{\left(\gamma p_{\perp 0}\right)^{2}}{\left(\gamma p_{\perp 0}\right)^{2}+p_{\perp}^{2}}
$$

Figure T. Sjöstrand

- Actual merging by minimization of "potential energy":

$$
\lambda=\sum_{\text {dipoles }} \log \left(1+\sqrt{2} E / m_{0}\right)
$$

Junction CR
 (Christiansen and Skands arXiv:1505.01681 [hep-ph])

- Possible structures from QCD-inspired weight.
- Selection relies on λ-measure (potential energy).

Ordinary string reconnection

Triple junction reconnection

Double junction reconnection

Zipping reconnection

Charmed baryons

- Good laboratory - highlights the effects!
- Changes the relative baryon/meson production rate.
- Keep the amount of charm fixed!

[^0]
Colour Reconnection - microscopic collectivity?

(Ortiz et al.: 1303.6326, CB QM18: 1807.05217 \& mcplots.cern.ch)

\checkmark Mechanism allows cross-talk over an event.
B Needed for multiplicity \& $\left\langle p_{\perp}\right\rangle$.
B Produces flow-like effect.
B Additional baryons!

Colour Reconnection - microscopic collectivity?

3 Mechanism allows cross-talk over an event.
B Needed for multiplicity \& $\left\langle p_{\perp}\right\rangle$.
B Produces flow-like effect.
B Additional baryons!
N No direct space-time dependence.
P Concrete model clearly ad-hoc.

Short range in rapidity only.
o Too many baryons?

Colour Reconnection - microscopic collectivity?

\checkmark Mechanism allows cross-talk over an event.
B Needed for multiplicity \& $\left\langle p_{\perp}\right\rangle$.
13 Produces flow-like effect.
B Additional baryons!
T No direct space-time dependence.
© Concrete model clearly ad-hoc.
Short range in rapidity only.
o Too many baryons?

Colour Reconnection - microscopic collectivity?

B Mechanism allows cross-talk over an event.
B Needed for multiplicity \& $\left\langle p_{\perp}\right\rangle$.
B Produces flow-like effect.
B Additional baryons!
R No direct space-time dependence.
© Concrete model clearly ad-hoc.
Short range in rapidity only.
o Too many baryons?

- After shoving, strings (p and q) still overlap.
- Combines into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Rope Hadronization (JHEP 1503 (2015) 148 - explored heavily in 800° sand 90° 's1)

- After shoving, strings (p and q) still overlap.
- Combines into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Easily calculable using SU(3) recursion relations

$$
\begin{gathered}
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\} \\
\underbrace{\square \otimes \square \otimes \ldots \otimes \square}_{\text {All anti-triplets }} \underbrace{\otimes \square \otimes \square \otimes \ldots \otimes \square}_{\text {All triplets }}
\end{gathered}
$$

Rope Hadronization (JHEP 1503 (2015) 148 - explored heavily in 80° 's and 90° sl)

- After shoving, strings (p and q) still overlap.
- Combines into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Easily calculable using SU(3) recursion relations

$$
\begin{gathered}
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\} \\
\underbrace{\square \otimes \square \otimes \ldots \otimes \square}_{\text {All anti-triplets }} \underbrace{\otimes \square \otimes \square \otimes \ldots \otimes \square}_{\text {All triplets }}
\end{gathered}
$$

- Transform to $\tilde{\kappa}=\frac{2 p+q+2}{4} \kappa_{0}$ and $2 N=(p+1)(q+1)(p+q+2)$.
- N serves as a state's weight in the random walk.

Divide and conquer!

- Consider now the stacking of such pairs.
- $\mathrm{SU}(3)$ multiplet structure decided by random walk.

Divide and conquer!

- Consider now the stacking of such pairs.
- SU(3) multiplet structure decided by random walk.

Three conceptual options

1. Highest multiplet (Rope).
2. Lower multiplet (junction structure).
3. Singlet.

Lower multiplets \& singlets \rightarrow QCD colour reconnection.

The highest multiplet

- Remaining structure joins in a rope.
- Rope breaks one string at a time, reducing the remaining tension.
- Junctions carry baryon number.

Strangeness enhanced by:

$$
\rho_{L E P}=\exp \left(-\frac{\pi\left(m_{s}^{2}-m_{u}^{2}\right)}{\kappa}\right) \rightarrow \tilde{\rho}=\rho_{L E P}^{\kappa_{0} / \kappa}
$$

- QCD + geometry extrapolation from LEP.
- Can never do better than LEP description!

Forward/central multiplicity folding

- Full, honest comparison requires reproduction of centrality-measure.
- Recently possible in the Rivet project (rivet.hepforge.org, see ater)

Strangeness enhancement

- Red: Pythia 8 Default, Blue: Pythia 8 w. Ropes, Black: ALICE data.

An aside about LEP constraints

- Statement: Pythia describes LEP correctly!
- Truth: ... well, mostly!

- Even LEP leaves room for model development!
- ... and LHC allows for catching suspicious data!
- Needs: Apples-to-apples comparison to data.

An aside about Levy-Tsallis fits

- Extrapolated spectra are difficult to compare to!
- For Pythia: Yields matches the fit, $\left\langle p_{\perp}\right\rangle$ not.

Take home message

MC: Don't rely on fits for average quantities when the spectrum is off.
Pythia still has problems describing this. Shoving could improve matters.

String shoving

- Strings $=$ interacting vortex lines in superconductor.
- For $t \rightarrow \infty$, profile known from IQCD (Cea et al:: PRD89 (2014) no.9, 094505):

String shoving

- Strings $=$ interacting vortex lines in superconductor.
- For $t \rightarrow \infty$, profile known from IQCD (Cea et al:: PRD89 (2014) no.9, 094505):

$$
\begin{gathered}
\mathcal{E}\left(r_{\perp}\right)=C \exp \left(-r_{\perp}^{2} / 2 R^{2}\right) \\
E_{i n t}\left(d_{\perp}\right)=\int d^{2} r_{\perp} \mathcal{E}\left(\vec{r}_{\perp}\right) \mathcal{E}\left(\vec{r}_{\perp}-\vec{d}_{\perp}\right) \\
f\left(d_{\perp}\right)=\frac{d E_{i n t}}{d d_{\perp}}=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}(t)}{4 R^{2}}\right) .
\end{gathered}
$$

- All energy in electric field $\rightarrow g=1$.

String shoving

- Strings $=$ interacting vortex lines in superconductor.
- For $t \rightarrow \infty$, profile known from IQCD (Cea et al:: PRD89 (2014) no.9, 094505):

$$
\begin{gathered}
\mathcal{E}\left(r_{\perp}\right)=C \exp \left(-r_{\perp}^{2} / 2 R^{2}\right) \\
E_{i n t}\left(d_{\perp}\right)=\int d^{2} r_{\perp} \mathcal{E}\left(\vec{r}_{\perp}\right) \mathcal{E}\left(\vec{r}_{\perp}-\vec{d}_{\perp}\right) \\
f\left(d_{\perp}\right)=\frac{d E_{i n t}}{d d_{\perp}}=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}(t)}{4 R^{2}}\right) .
\end{gathered}
$$

- All energy in electric field $\rightarrow g=1$.
- Reality:

Type 1 SC Energy to destroy vacuum.
Type 2 SC Energy in current.

Some Results: shoving

- Reproduces the pp ridge with suitable choice of g parameter.
- Improved description of $v_{2}\{2,|\Delta \eta|>2\}.\left(p_{\perp}\right)$ at high multiplicity.
- Low multiplicity not reproduced well - problems for jet fragmentation?

Shoving: Why is AA so difficult?

- In pp two crude approximations were made:

1. All strings straight and parallel to the beam axis.
2. Pushes can be added as soft gluons.

- This gives problems in AA, which we are solving:

日b Beam axis \rightarrow parallel frame.

- Soft gluons \rightarrow push on hadrons.
- Straight strings \rightarrow treatment of gluon kinks? (WiP).
- Enough for a toy run!

A toy example

- Consider an elliptical overlap region filled with straight strings (no gluons).
- Same shoving parameters as for pp.

Toy results

- To take away: The mechanism gives a resonable response.
- A local mechanism can result in global features.

Toy results (Data: ALICE PRL 116 (2016) 132302)

- To take away: The mechanism gives a resonable response.
- A local mechanism can result in global features.

The importance of the initial state

- Space-time information is important: We rely on models! Also true for hydro.
- Here: Overlapping 2D Gaussians (p mass distribution).
- Figure string $R=0.1 \mathrm{fm}$, reality $R \sim 0.5 \mathrm{fm}$.

The importance of the initial state

- Space-time information is important: We rely on models! Also true for hydro.
- Here: Overlapping 2D Gaussians (p mass distribution).
- Figure string $R=0.1 \mathrm{fm}$, reality $R \sim 0.5 \mathrm{fm}$.

The importance of the initial state

- Space-time information is important: We rely on models! Also true for hydro.
- Here: Overlapping 2D Gaussians (p mass distribution).
- Figure string $R=0.1 \mathrm{fm}$, reality $R \sim 0.5 \mathrm{fm}$.

A more realistic model

- Initial state cascade/hot-spots from perturbative QCD.
- Mueller dipole BFKL as parton shower.

Dipole splitting and interaction

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} y \mathrm{~d}^{2} \vec{r}_{3}} & =\frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{r_{12}^{2}}{r_{13}^{2} r_{23}^{2}} \Delta\left(y_{\min }, y\right), \\
f_{i j} & =\frac{\alpha_{s}^{2}}{2} \log ^{2}\left(\frac{r_{13} r_{24}}{r_{14} r_{24}}\right) .
\end{aligned}
$$

A more realistic model (WIP: with Ilkka Helenius; CB \& C. O. Rasmussen: 1907.12871 [hep-ph])

- Initial state cascade/hot-spots from perturbative QCD.
- Mueller dipole BFKL as parton shower.

Dipole splitting and interaction

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} y \mathrm{~d}^{2} \vec{r}_{3}} & =\frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{r_{12}^{2}}{r_{13}^{2} r_{23}^{2}} \Delta\left(y_{\min }, y\right), \\
f_{i j} & =\frac{\alpha_{s}^{2}}{2} \log ^{2}\left(\frac{r_{13} r_{24}}{r_{14} r_{24}}\right) .
\end{aligned}
$$

\rightarrow

Everything fitted to cross sections

- Avoids fitting to predictions.
- Unitarized dipole-dipole amplitude plus Good-Walker.

$$
T(\vec{b})=1-\exp \left(-\sum f_{i j}\right), \sigma_{t o t}=\int d^{2} \vec{b} 2 T(\vec{b})
$$

Geometry in pp, pA and AA

- Assuming $\epsilon_{2,3} \propto v_{2,3}$.
- Dipole model: $\epsilon_{2,3}$ equal for pp and pPb .

Flow fluctuations: Looking inside

- Flow fluctuations and normalized symmetric cumulants.
- Best discrimination in pPb.
- Dipole evolution \rightarrow negative $\operatorname{NSC}(2,3)$ in pPb .

- Important to develop realistic initial states.
- Point stands also for hydro.

Rivet (for heavy ions)

- Comparison between model and experiment is crucial!
- It is important to get analysis details exactly right.
- Recent joint project between ALICE \& MC community.
- Easy implementation of triggers, primary

```
/// Perform the per-event analysis
void analyze (const Event& event) {
    // Charged, primary particles with at least pT = 50 MeV
    // in eta range of |eta|< < 0.5
    Particles chargedParticles =
        applyProjection<ALICE: :PrimaryParticles>(event,"APRIM").particles();
    // Trigger projections
    const ChargedFinalState& vzl =
        applyProjection<ChargedFinalState>(event,"VZER01");
    const ChargedFinalState& vz2 =
        applyProjection<ChargedFinalState>(event,"VZER02");
    const ChargedFinalState& spd =
    applyProjection<ChargedFinalState>(event,"SPD");
    int fwdTrig = (vzl.particles().size() > 0 ? 1 : 0) ;
    int bwdTrig = (vz2.particles().size() > 0 ? 1 : 0);
    int cTrig = (spd.particles().size() > 0 ? 1 : 0);
    if (fwdTrig + bwdTrig + cTrig < 2) vetoEvent;
    const centralityProjection& centrProj =
        apply<CentralityProjection>(event, "VOM");
    double centr = centrProj();
    if (centr > 80) vetoEvent;
    // Calculate number of charged particles and fill histogram
    double nch = chargedParticles.size():
    histNchVsCentr->fill(centr, nch);
``` particiles, centrality classes, flow...

\section*{Instead of a conclusion: Call for action!}
- Transition to precision science - activity on the MC side. (also in eg. HERWIG)
- New kid on the block: Rivet for heavy ions, strong pheno/ALICE collaboration.
- Rivet is a tool we can and should use to strengthen understanding.
- It is more than just another analysis framework...

A means to meet stratetic decisions about th/exp collaboration!
- Not just re-working old analyses, but also:
1. Keeping theorists honest!
2. Valuable input for tuning efforts.
3. Precise communication of predictions \& exp. constraints.
4. Valuable for upgrade discussions?
- Definitely something to build on in the future!```

[^0]: ALT-PRKLI-336442

