Pythia, DIPSY and Angantyr - past, present and future

with focus on collectivity and heavy ion physics

Christian Bierlich, bierlich@thep.lu.se
University of Copenhagen
Lund University
March 27 2019, ALICE mini-workshop on MB \& MC

Thank you ALICE, for all the beautiful data!

- Tales from the belly of the MC generators: DIPSY and Pythia.
- Generators with focus on soft QCD.
- Both capable of colliding HI beams.
- Extensive use of Lund strings.
- Both are generators without QGP. Idea is:
- Most observables in pp can be explained without QGP.
- Collectivity $=$ small effect, added as correction.
- Long term: What happens when we extrapolate to AA?
- This talk:

1. Past: The basic formalism, and results ≈ 2014
2. Present: Ropes and shoving in Pythia, Angantyr and possibilities.
3. Future: Many prospects - three things I work on right now.

Pythia

- Obviously very well known.

Pythia

- Obviously very well known.

PYTHIA 6.4 Physics and Manual

Torbjorn Sjostrand (Lund U., Dept. Theor. Phys.), Stephen Mrenna, Peter Z. Skands (Fermilab)
Mar 2006-576 pages
JHEP 0605 (2006) 026
DOI: 10.1088/1126-6708/2006/05/026
FERMILAB-PUB-06-052-CD-T, LU-TP-06-13
e-Print: hep-ph/0603175 | PDF

- Here: Soft QCD (MPI model) + CR + strings.
- MPIs crucial for high energy pp collisions.

MPIs in Pythia 8: proton collisions (sjastrand and Skands: arxiv:hep-ph/00002078)

- Several partons from the PDF.
- Hard subcollisions with $2 \rightarrow 2$ ME:

Figure T. Sjöstrand

$$
\frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)}{\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)^{2}}
$$

- Momentum conservation and PDF scaling.
- Ordered emissions: $p_{\perp 1}>p_{\perp 2}>p_{\perp 4}>\ldots$ from:

$$
\mathcal{P}\left(p_{\perp}=p_{\perp i}\right)=\frac{1}{\sigma_{n d}} \frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}} \exp \left[-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{1}{\sigma_{n d}} \frac{d \sigma}{d p_{\perp}^{\prime}} d p_{\perp}^{\prime}\right]
$$

- Number distribution narrower than Poissonian (momentum and flavour rescaling).

Color reconnection

- Many partonic subcollisions \Rightarrow Many hadronizing strings.
- But! $N_{c}=3$, not $N_{c}=\infty$ gives interactions.
- Easy to merge low- p_{\perp} systems, hard to merge two hard- p_{\perp}.

$$
\mathcal{P}_{\text {merge }}=\frac{\left(\gamma p_{\perp 0}\right)^{2}}{\left(\gamma p_{\perp 0}\right)^{2}+p_{\perp}^{2}}
$$

Figure T. Sjöstrand

- Actual merging decided by minimization of:

$$
\lambda=\sum_{\text {dipoles }} \log \left(1+\sqrt{2} E / m_{0}\right)
$$

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

The Lund String

- Non-perturbative phase of final state.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.
Light flavour determination

$$
\rho=\frac{\mathcal{P}_{\text {strange }}}{\mathcal{P}_{\mathrm{u} \text { or } \mathrm{d}}}, \xi=\frac{\mathcal{P}_{\text {diquark }}}{\mathcal{P}_{\text {quark }}}
$$

Related to κ by Schwinger equation.

The DIPSY model (Flensburg et al. arxivivi 103 , 4321 (hiep-phil))

- A very different view on MPIs, built on Mueller dipole model (Mueller and Patel arXiv:hep-ph/9403256).
- Proton structure built up dynamically from dipole splittings:

Model implemented as a MC event generator
Dipole evolution in Impact Parameter Space and rapiditY.

$$
\begin{aligned}
& \frac{d P}{d Y}=\frac{3 \alpha_{s}}{2 \pi^{2}} d^{2} \vec{z} \frac{(\vec{x}-\vec{y})^{2}}{(\vec{x}-\vec{z})^{2}(\vec{z}-\vec{y})^{2}}, f_{i j}=\frac{\alpha_{s}^{2}}{8}\left[\log \left(\frac{\left(\vec{x}_{i}-\vec{y}_{j}\right)^{2}\left(\vec{y}_{i}-\vec{x}_{j}\right)^{2}}{\left(\vec{x}_{i}-\vec{x}_{j}\right)^{2}\left(\vec{y}_{i}-\vec{y}_{j}\right)^{2}}\right)\right]^{2} \\
& \text { 2.2 }
\end{aligned}
$$

- MPIs are included by construction.
- No PDFs (also: no quarks, no ME \Rightarrow few hard jets).

DIPSY and Ropes

- Utilize knowledge of string postitions - strings (p and q) still overlap.
- Combines into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

DIPSY and Ropes (CB, Gustafson, Lönnblad \& Tarasov: 1412.6259)

- Utilize knowledge of string postitions - strings (p and q) still overlap.
- Combines into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Easily calculable using SU(3) recursion relations

$$
\begin{gathered}
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\} \\
\underbrace{\square \otimes \boxminus \otimes \ldots \otimes \square}_{\text {All anti-triplets }} \underbrace{\otimes \square \otimes \square \otimes \ldots \otimes \square}_{\text {All triplets }}
\end{gathered}
$$

DIPSY and Ropes (CB, Gustafson, Lönnblad \& Tarasov: 1412.6259)

- Utilize knowledge of string postitions - strings (p and q) still overlap.
- Combines into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Easily calculable using SU(3) recursion relations

$$
\begin{gathered}
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\} \\
\underbrace{\square \otimes \square \otimes \ldots \otimes \square}_{\text {All anti-triplets }} \underbrace{\otimes \square \otimes \square \otimes \ldots \otimes \square}_{\text {All triplets }}
\end{gathered}
$$

- Transform to $\tilde{\kappa}=\frac{2 p+q+2}{4} \kappa_{0}$ and

$$
2 N=(p+1)(q+1)(p+q+2)
$$

CR collectivity is short range in rapidity

$C R=$ short range in rapidity. Little effect on inclusive flavour composition.

CR collectivity is short range in rapidity

$C R=$ short range in rapidity. Little effect on inclusive flavour composition.

Quantifying its contribution

- Moves protons to measured phase space (velasquez et al. PRL 111 (2013) 042001).
- Contribution to radial component, short range in y.

Contribution to $v_{2}\{2\}$ disappears: $C R$ not long range.

Strangeness enhancement

- A game of density.
- Good description of strangeness enhancement.

Strangeness enhancement

- A game of density.
- Good description of strangeness enhancement.

- DIPSY can make use of its impact parameter picture.

Present

String shoving

- Strings $=$ interacting vortex lines.
- For $t \rightarrow \infty$, profile known from IQCD (Cea et al:. PRD89 (2014) no.9, 094505):

String shoving

- Strings $=$ interacting vortex lines.
- For $t \rightarrow \infty$, profile known from IQCD (Cea et al:: PRD89 (2014) no.9, 094505):

$$
\begin{gathered}
\mathcal{E}\left(r_{\perp}\right)=C \exp \left(-r_{\perp}^{2} / 2 R^{2}\right) \\
E_{i n t}\left(d_{\perp}\right)=\int d^{2} r_{\perp} \mathcal{E}\left(\vec{r}_{\perp}\right) \mathcal{E}\left(\vec{r}_{\perp}-\vec{d}_{\perp}\right) \\
f\left(d_{\perp}\right)=\frac{d E_{i n t}}{d d_{\perp}}=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}(t)}{4 R^{2}}\right) .
\end{gathered}
$$

- Dominated by electric field $\rightarrow g=1$.

String shoving

- Strings $=$ interacting vortex lines.
- For $t \rightarrow \infty$, profile known from IQCD (Cea et al:: PRD89 (2014) no.9, 094505):

$$
\begin{gathered}
\mathcal{E}\left(r_{\perp}\right)=C \exp \left(-r_{\perp}^{2} / 2 R^{2}\right) \\
E_{i n t}\left(d_{\perp}\right)=\int d^{2} r_{\perp} \mathcal{E}\left(\vec{r}_{\perp}\right) \mathcal{E}\left(\vec{r}_{\perp}-\vec{d}_{\perp}\right) \\
f\left(d_{\perp}\right)=\frac{d E_{i n t}}{d d_{\perp}}=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}(t)}{4 R^{2}}\right) .
\end{gathered}
$$

- Dominated by electric field $\rightarrow g=1$.
- Reality:

Type 1 Energy to destroy vacuum.
Type 2 Energy in current.

Some Results: shoving

- Reproduces the pp ridge with suitable choice of g parameter.
- Improved description of $v_{2} 2|\Delta e t a|>2 .\left(p_{\perp}\right)$ at high multiplicity.

Ropes in Pythia

- The rope framework ported from DIPSY to Pythia.
- Requires space-time picture.
- Here: Overlapping 2D Gaussians (p mass distribution).
- All lower multiplets handled by CR.

An aside about Levy-Tsallis fits

- Extrapolated spectra are difficult to compare to!
- For Pythia: Yields matches the fit, $\left\langle p_{\perp}\right\rangle$ not.

Take home message

MC: Don't rely on fits for average quantities when the spectrum is off.
Pythia still has problems describing this. Shoving could improve matters.

Angantyr

- Extending the Pythia MPI model to Heavy lons.

1. Only tuning to pp, add Glauber for nuclear geometry.

- Focus on cross section fluctuations (Glauber-Gribov) and correct handling of diffractive excitation.

Glauber initial state

- Determine which nucleons are "wounded".
- Geometric picture only relies on pp cross section.

Glauber-Gribov colour fluctuations

- Cross section has EbE colour fluctuations.
- Parametrized in Angantyr, fitted to pp (total, elastic, diffractive).

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$\frac{d N}{d \eta}=\quad F(\eta)$
(single wounded nucleon
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$\frac{d N}{d \eta}=F(\eta)+\quad F(-\eta)$
(pp)
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$$
\begin{equation*}
\frac{d N}{d \eta}=w_{t} F(\eta)+\quad F(-\eta) \tag{pA}
\end{equation*}
$$

- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

Particle production: Wounded nucleons

- Simple model by Białas and Czyz.
- Wounded nucleons contribute equally to multiplicity in η.
- Originally: Emission function $F(\eta)$ fitted to data.

$\frac{d N}{d \eta}=w_{t} F(\eta)+w_{p} F(-\eta)$
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \sqrt{s}, can be retuned down to 10 GeV .

The emission function

- A schematic view of a pD collision. Contains 3 wounded nucleons.
- First two are a normal non-diffractive pp event.
- The second one is modelled as a single diffractive event.
- Generalizes to all pA and AA collisions.

(a)

(b)

Some results - pPb

- Centrality measures are delicate, but well reproduced.

Some results - pPb

- Multiplicity distributions well reproduced.

Some results - PbPb

- Centrality measure well reproduced.

Some results - PbPb

- Multiplicity distributions well reproduced.
- Also XeXe (prediction) including up-tick.

(b) Centrality dependent η distribution $\mathrm{PbPb}, \sqrt{S_{N N}}=2.76 \mathrm{TeV}$

Some results - PbPb

- Spectra to a lesser degree, no collective effects so far.

Easy to use!

```
File Edit Tools Syntax Buffers Window Help
#include "Pythia8/Pythia.h"
#include "Pythia8/HeavyIons.h"
using namespace Pythia8;
// This is a one-slide example progran demonstrating Heavy Ion
// functionality.
int main() {
    Pythia pythia;
    // Setup the beams
    pythia.readString("Beams:idA = 1000822080");
    pythia.readString("Beams:idB = 1000822080"); // The lead ion
    pythia.readString("Beams:eCM = 2760.0");
    // Sum up the weights of all generated events.
    double sumw = 0.0;
    // Count the number of charged particles.
    double ncEvent = 0.0;
    // Initialise Pythia.
    pythia.init();
    for ( int iEvent = 0; iEvent < 1000; ++iEvent ) {
        if ( !pythia.next() ) continue;
        double nc = 0.0;
        for (int i = 0; i < pythia.event.size(); ++i) \
            Particle & p = pythia.event[i];
            if ( p.isFinal() ) {
                if ( p.ischarged() && p.pT() > 0.1 && abs(p.eta()) < 0.5 ) ++nc;
            f
        sumw += pythia.info.weight();
        ncEvent += nc * pythia.info.weight();
    }
    cout << "Charged multiplicity density at mid-eta: " << ncEvent / sumw << endl;
    return 0;
}
```

- Fully integrated with Pythia.
- Internal or external ME's.
- Support for several nuclei.
- C++, Python interface distributed w. Pythia.
- Output: Rivet, HepMC, ROOT6 trees.

Two ideas

- MC implementation of models allows development of observables.
- Crucial: Physics can be "switched off", in a way it cannot in nature.

IDEA

Can we get a better handle on strangeness enhancement?

- We can do better than inclusive rates.
- Accessing longitudinal (rapidity) structure: Correlation measurements.
- Consider ropes in a ϕ-triggered event.

1. Even in $e^{+} e^{-}$we bias to more strange production,
2. In pp we can assess the difference wrt. default strings.
3. Moving closer to the ϕ production rapidity gives larger string tension.

- Statistics hungry analysis - something for HL-LHC?

Preliminary: pp @ 13 TeV (Pythia8 + ropes)

- Input for discussion:

1. Sensible measurement?
2. What does thermal models say?
3. Can we remove the neigbor bias? (require neighbor etc.)

What about shoving and jets?

- String dynamics ought to be universal.
- Consider now:

1. Events with a Z-boson present.
2. Events with $Z+j e t$.

- $Z \rightarrow I^{+} I^{-}$not affected by shoving.
- Provides kinematics handle.

What about shoving and jets? (CB: 1901.07447)

- String dynamics ought to be universal.
- Consider now:

1. Events with a Z-boson present.
2. Events with $Z+$ jet.

- $Z \rightarrow I^{+} I^{-}$not affected by shoving.
- Provides kinematics handle.

Common statement:
\diamond FS interactions \rightarrow flow should also affect jets.
\diamond The shoving model provides a framework to study such effects.
\diamond This does not mean that shoving is the full story.

Try just a Z-boson

- The presence of a Z should not change the physics.
- It can introduce kinematical biases.
- Recently measured by ATLAS (Atlas-conf-2017-068).

Try just a Z-boson

- The presence of a Z should not change the physics.
- It can introduce kinematical biases.
- Recently measured by ATLAS (Atlas-conf-2017-068).

What is the effect of shoving?

- Nothing! Surprised?
- Of course not - the effect is geometrically surpressed.
- Toy geometry: Let jet hadronize "inside".
- Mimic the effect in AA collisions.

What is the effect of shoving?

- Nothing! Surprised?
- Of course not - the effect is geometrically surpressed.
- Toy geometry: Let jet hadronize "inside".
- Mimic the effect in AA collisions.

Qualitative similarities (cms : 170201060$)$

- Need better obsevables.
- Soft modifications on jet edge (large R).

Hadrochemistry

- Hadrochemistry indirectly affected through basic string equations.
- Study inclusive quantities: Average hadron mass and total jet charge: $\left\langle m_{h}\right\rangle=\frac{1}{N_{p}} \sum_{i}^{N_{p}} m_{h, i}, Q_{j}=\sum_{i}^{N_{p}} q_{h, i}$

Hadrochemistry

- Hadrochemistry indirectly affected through basic string equations.
- Study inclusive quantities: Average hadron mass and total jet charge: $\left\langle m_{h}\right\rangle=\frac{1}{N_{p}} \sum_{i}^{N_{p}} m_{h, i}, Q_{j}=\sum_{i}^{N_{p}} q_{h, i}$

Hadrochemistry

- Hadrochemistry indirectly affected through basic string equations.
- Study inclusive quantities: Average hadron mass and total jet charge: $\left\langle m_{h}\right\rangle=\frac{1}{N_{p}} \sum_{i}^{N_{p}} m_{h, i}, Q_{j}=\sum_{i}^{N_{p}} q_{h, i}$

Hadrochemistry

- Hadrochemistry indirectly affected through basic string equations.
- Study inclusive quantities: Average hadron mass and total jet charge: $\left\langle m_{h}\right\rangle=\frac{1}{N_{p}} \sum_{i}^{N_{p}} m_{h, i}, Q_{j}=\sum_{i}^{N_{p}} q_{h, i}$

Future

Obvious extensions

- Extension of ropes and shoving to pA and AA an obvious venue.
- Very active, still few results.
- In the framework of CLASH, see www.hep.lu.se/clash

Final state interactions in Angantyr (w. D. chinelito e\& A. da sives)

- Hadronic interactions in final state with URQMD.
- Hardon vertices from string model (Ferreres-Solé \& Sjostrand: 1808.04619).

- Definitely neccesary ingredient for ropes in AA collisions.
- Many interesting prospects, resonances, effects on jets etc.
- Maybe possible to investigate pp as well.

Improving the Pythia space-time picture (w. co. Rasmusen)

- Mueller dipole QCD (re: DIPSY) interesting features for space time model.

1. Perturbative calculation (+ non-perturbative corrections).
2. Structure parameters fitted to cross sections.

- Goal: Mueller dipoles \rightarrow space time information to Pythia MPIs.

The cosmic connection

- Uncertainties on cosmic data \leftarrow uncertainty on hadronic MCs.
- ... this is in turn limited by lack of good data.
- Use Pythia/Angantyr for cosmic data.
- Relies heavily on data from NA-22 days.

Opportunity for ALICE

Particle production with PID in pO at high energies.
Valuable cross-collaboration output.

Instead of a summary: The experimental wishlist

- Strangeness in pp:

1. The ϕ is a sensitive probe.
2. Triggered ratios \rightarrow higher resolution.
3. p_{\perp} of heavy hadrons continues to puzzle us.

- Correlations:

1. Continued efforts on precise flow measurements \& SC's important for geometry. TH is lacking behind.
2. Z-triggered jets a window to SS jet modifications.
3. Shoving gives effects on jet chemistry.

- AA particle production:

1. Centrality measures unfolded.
2. Strong case for Oxygen collisions also from cosmic ray community.

Thank you!

