Color reconnection in tt final states at the LHC

Spyros Argyropoulos

work in collaboration with Torbjörn Sjöstrand arXiv:1407.6653 (to appear in JHEP)

> MCnet meeting - Karlruhe 9/10/2014

Experiment	m _{top} [GeV]	Error due to CR	Reference
World comb.	173.34±0.76	310 MeV (40%)	arXiv:1403.4427
CMS	172.22±0.73	150 MeV (20%)	CMS-PAS-TOP-14-001
D0	174.98±0.76	100 MeV (13%)	arXiv:1405.1756

- 1. Great job in reducing the errors
- 2. CR is one of the dominant systematics
- 3. Why is the CR uncertainty going down when there are
 - no advances on the theoretical understanding
 - no measurements to constrain it

Measuring m_{top}

Direct m_{top} measurement

Many effects complicate the procedure: showers, hadronization, jet reconstruction

We focus on color topology...

This talk

- 1. how is the CR uncertainty determined?
- 2. what we did to improve it
 - new models in Pythia 8
 - realistic estimates of the CR uncertainty
 - how we can reduce the uncertainty with data

NB: "improve" doesn't always mean to reduce the uncertainties but to show if and how it can be done

Estimating the CR uncertainty

 $\Delta m_{top} = m_{top}(default \ CR) - m_{top}(no \ CR)$

Currently this is done with **Pythia 6**, where multiple CR models are available.

We want:

- range of (new) CR models
- models that will envelop the data => uncertainty band
- a way to kill them

The problem

- **'no CR' is unphysical** (uncertainty overestimated?)
- $m_{top}(no CR)$ might not provide a bound for Δm_{top} (uncertainty underestimated?)
- limited range of modeling options in Pythia 8

Time scales

Big time difference between top decay and hadronization:

CR in top can be modeled differently than CR in Min Bias

Two extreme options:

- late resonance decay

top decays after CR has taken place

- early resonance decay

CR happens after top decay (e.g. W can reconnect with b/MPI)

The models

<u>Exis</u>	sting		<u>[</u>	New	
default	default ERD		<u>Toy</u>	<u>N</u>	<u> Iore sophisticated</u>
		only	forced random		swap
		top events	forced nearest	all	move
		-	forced farthest	events	swap + flip
		default CR	forced smallest $\Delta\lambda$		move + flip
		afterburner	smallest $\Delta\lambda$		

To become available in Pythia 8.2

Models differ in...

When a CR is made

1. stochastic

2. forced

3. minimization

How a CR is made

- A. gluon move
- B. color exchange (both indices)

C. flip (single index)

Ways to perform a reconnection

CR in the default model

<u>When</u>

1. Starting from lowest p_T interaction calculate reconnection probability

$$P_{\rm rec}(p_T) = \frac{(R_{\rm rec}p_{T0})^2}{(R_{\rm rec}p_{T0})^2 + p_T^2}$$

softer systems easier to reconnect
soft = extended wavefunction

 $p_T \downarrow \implies P_{\rm rec} \uparrow$

2. Iterate (1) for all interactions ; if $P_{rec} > \alpha \in [0,1]$ do reconnection

→ stochasticity

<u>How</u>

- 1. Sort interactions that where CR will happen in decreasing p_T —
- 2. Starting from the **hardest interaction** find color dipoles (i,j)
- 3. Move gluons {k} from softer interactions to dipole (i,j) that minimizes the increase in 'string length'

$$\Delta \lambda = \lambda_{ik} + \lambda_{jk} - \lambda_{ij} = \ln \frac{(p_i \cdot p_k)(p_j \cdot p_k)}{(p_i \cdot p_j)m_0^2}$$

minimally affect the perturbative color flow!

$$\lambda \sim \Delta y \sim \langle n \rangle$$

Effect on m_{top} (before tuning)

Reconstructed top mass, $m_W \in [75, 85]$ GeV, $p_T(\text{jets}) > 40$ GeV

Model	Δm_{top} [GeV]	$\Delta m_{top}^{rescaled}$ [GeV]	
default	-0.415	+0.209	
default ERD	+0.381	+0.285	
forced random	-6.970	-6.508	

- **CR can** inherently have big effects
- Δm_{top} is not bounded by $m_{top}(no CR)$, in other words $m_{top}(CR)-m_{top}(no)$ **CR)** probably underestimates the uncertainty

Why CR shifts m_{top}

$$m_{\rm top}^2 = (p(b) + p(j_1) + p(j_2))^2$$

changes in p (leakage of hadrons out of the jet cone)

changes in $p_{j1}p_{j2} \sim cos\theta_{j1j2}$

Tuning

- No publicly available measurements of UE in top events
- toy models tuned to jet shapes in tt events measured by ATLAS (CR strength α)
- MB models tuned to minimum bias data measured by ATLAS (p_{T0}^{ref} , $\Delta\lambda_{cut}$)

Effect on m_{top} (after tuning)

Model	$\Delta m_{top}^{rescaled}$ [GeV]
default	+0.239
forced random (min)	-0.524
move	+0.239
swap (max)	+0.273

- Maximum variation: $m_{top}^{max} m_{top}^{min} \approx 800 \text{ MeV}$
- considering only the more sophisticated models:

 $\Delta m_{top} \approx 500 \text{ MeV}$

We believe that this is a realistic estimate of the CR uncertainty based on our current understanding of the phenomenon and on the available measurements.

How to reduce CR uncertainty

Make measurements that can constrain the models

- charged particle multiplicity, p_T in tt events
- mean p_T density per unit jet area, $< n_{ch} > (\Delta R_{Wb})$
- efforts from both CMS and ATLAS to measure UE in tt events
 ongoing analyses will hopefully incorporate these measurements

Summary

The situation so far...

- yet no measurements to constrain CR in top events
- current procedure to estimate CR uncertainty on top mass probably underestimates the uncertainty

Our work...

- **new CR models** developed and tuned to data
- a realistic estimate for the top mass uncertainty is of the order of 500 MeV
- there are observables that can constrain/exclude most of these models with existing LHC data

New model by J.Christiansen and P.Skands will allow more tests

Many thanks to Torbjörn, Lund THEP and MCnet