Updates on junctions in PYTHIA and describing strangeness

Javira Altmann, Monash University

Hadronisation and the Lund String Model

Hadronisation in PYTHIA:
$>$ Maps partons to hadrons using the Lund String Model
> Represent the colour-confinement field between colourconnected partons (i.e. form overall colour singlet state) as strings
$>$ Partons move apart and "break" the string, creating new light quark-antiquark pairs (or diquark-antidiquark pairs)

Hadronisation and the Lund String Model

Hadronisation in PYTHIA:

> Maps partons to hadrons using the Lund String Model
$>$ Represent the colour-confinement field between colourconnected partons (i.e. form overall colour singlet state) as strings
$>$ Partons move apart and "break" the string, creating new light quark-antiquark pairs (or diquark-antidiquark pairs)

Starting point is Leading Colour limit $N_{C} \rightarrow \infty$
$>$ Each colour is unique \rightarrow only one way to make colour singlets

In $e^{+} e^{-}$collisions (LEP):
$>$ Corrections suppressed by $1 / N_{C}^{2} \sim 10 \%$
$>$ Not much overlap in phase space

e.g. a dipole string configuration which make
use of the colour-anticolour singlet state

Hadronisation and the Lund String Model

Hadronisation in PYTHIA:

> Maps partons to hadrons using the Lund String Model
$>$ Represent the colour-confinement field between colourconnected partons (i.e. form overall colour singlet state) as strings
$>$ Partons move apart and "break" the string, creating new light quark-antiquark pairs (or diquark-antidiquark pairs)

Starting point is Leading Colour limit $N_{C} \rightarrow \infty$
$>$ Each colour is unique \rightarrow only one way to make colour singlets

But high-energy pp collisions involve very many coloured partons with significant phase space overlaps

e.g. a dipole string configuration which make use of the colour-anticolour singlet state

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

Dipole-type reconnection

What about the
-green-blue colour singlet state?

Junctions!

Junctions

Junctions

Mechanism for baryon production
$>\sim 40 \%$ of baryons are from junctions in PYTHIA

Asymmetries

$>$ Equal amount of junctions and anti junctions are formed Junctions typically form between jets \rightarrow as jets are likely to have large opening angles due to available phase space, junction sits at low p_{\perp}

Junctions

NO JUNCTIONS

Junctions

Mechanism for baryon production
$>\sim 40 \%$ of baryons are from junctions in PYTHIA

Asymmetries

$>$ Equal amount of junctions and anti junctions are formed
Junctions typically form between jets \rightarrow as jets are likely to have large opening angles due to available phase space, junction sits at low p_{\perp}

Heavy flavour ba $>\sim 70 \%$ of hea

Current implementation

$>$ Runs into cases with no solution (particularly for heavy quarks)
$>$ Relies on convergence procedure that fails $\sim 10 \%$ of the time

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles
\rightarrow the pull in each direction on the junction is equal
\rightarrow junction is at rest

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles
\rightarrow the pull in each direction on the junction is equal
\rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles
\rightarrow the pull in each direction on the junction is equal
\rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

Consider the following:
In the rest frame of one of the partons, and the angle between the other two partons is greater than 120°
*no special consideration for these cases in current implementation

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
> More likely to occur for junctions with heavy flavour endpoints

Example of pearl-on-a-string viewed in the Ariadne frame of the green quark

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
> More likely to occur for junctions with heavy flavour endpoints endpoints

For a junction to make a heavy baryon, the junction leg with the heavy quark can't fragment (i.e. a "soft" junction leg) = pearl-on-a-string!

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
> More likely to occur for junctions with heavy flavour endpoints

For a junction to make a heavy baryon, the junction leg with the heavy quark can't fragment (i.e. a "soft" junction leg) = pearl-on-a-string!

How do we fragment pearl-on-a-string cases?
$>$ Average over the pearl motion

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
> More likely to occur for junctions with heavy flavour endpoints

For a junction to make a heavy baryon, the junction leg with the heavy quark can't fragment (i.e. a "soft" junction leg) = pearl-on-a-string!

How do we fragment pearl-on-a-string cases?
$>$ Average over the pearl motion
$>$ Fragment like a $q-g-\bar{q}$ string typically only a good approximation for light quarks

Updates to averaging

Updates to averaging

Use an "average" JRF
Current procedure assumes the average is the mercedes frame
$>$ Uses energy weighted sum of momenta on each junction leg
$>$ Relies on convergence procedure that fails $\sim 10 \%$ of cases

New treatment:
$>$ Considers pull on junction over time and average over junction motion

- Includes pearl-on-a-string
$>$ Allow endpoint oscillations
$>$ No reliance on convergence
$>$ Early time JRF defined by the first parton on each leg
$>$ Use smallest leg momentum as a measure of effective time for the JRF
$>$ When softest parton has lost its momentum, the next parton dominates the pull

Junctions

Junctions

Junctions

Strangeness Enhancement

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13,535 (2017)]

Strangeness Enhancement

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

Strangeness Enhancement

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Strangeness Enhancement

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Strangeness Enhancement

Diquark Suppression

Popcorn Mechanism

Diquark formation via successive colour fluctuations

Diquark Suppression

Popcorn Mechanism

Diquark formation via successive colour fluctuations

Diquark Suppression

Popcorn Mechanism

Diquark formation via successive colour fluctuations

Diquark Suppression

Popcorn Mechanism

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

Diquark Suppression

Popcorn Mechanism

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

[^0]
Diquark Suppression

Popcorn Mechanism

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

Thank you for listening!

Backup Slides

Junction Rest Frame

What is the junction rest frame?

The standard JRF for a 3-parton configuration is defined as when the angle between each legs 3 -momentum is 120°

Finding the 120° JRF:

$>$ Fix the angle between the 3-momenta to 120° and calculate the invariants:

$$
a_{i j}=p_{i}^{\prime} p_{j}^{\prime}=E_{i}^{\prime} E_{j}^{\prime}-\left|\vec{p}_{i}^{\prime}\right|\left|\vec{p}_{j}^{\prime}\right| \cos \frac{2 \pi}{3}=E_{i}^{\prime} E_{j}^{\prime}+\frac{1}{2}\left|\vec{p}_{i}^{\prime}\right|\left|\vec{p}_{j}^{\prime}\right| \quad \text { Where dashed values are energy and momentum in the } 120^{\circ} \mathrm{JRF}
$$

$>$ Therefore we can make equation

$$
f_{i j}=f\left(\left|{\overrightarrow{p^{\prime}}}_{i}^{\prime}\right|,\left|\vec{p}_{j}^{\prime}\right| ; m_{i}, m_{j}, a_{i j}\right)=\sqrt{\left|\vec{p}_{i}^{\prime}\right|^{2}+m_{i}^{2}} \sqrt{\left|\vec{p}_{j}^{\prime}\right|^{2}+m_{j}^{2}}+\frac{1}{2}\left|\vec{p}_{i}^{\prime}\right|\left|\vec{p}_{j}^{\prime}\right|-a_{i j}
$$

with solutions when $f_{i j}=0$
$>$ Set $f_{13}=f_{12}=0$, and solving for $\left|\vec{p}_{j}\right|$ in terms of $\left|\vec{p}_{1}\right|$ we get

$$
\left|\vec{p}_{j}^{\prime}\right|\left(\vec{p}_{1}^{\prime}\right)=\frac{2 E_{1}^{\prime} \sqrt{4 a_{1 j}^{2}-m_{j}^{2}\left(4 E_{1}^{\prime 2}-\left|\vec{p}_{1}^{\prime}\right|^{2}\right)}-2\left|\vec{p}_{1}^{\prime}\right| a_{i j}}{4 E_{1}^{\prime 2}-\left|\vec{p}_{1}^{\prime}\right|^{2}}
$$

Then what if the JRF is no solution to $f_{23}=0$?
$>\operatorname{Set} f_{23}=0$, sub in the above equations for $\left|\vec{p}_{2}^{\prime}\right|$ and $\left|\vec{p}_{3}^{\prime}\right|$, and solve for $\left|\vec{p}_{1}^{\prime}\right|$

Junction Rest Frame

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
Consider a basic case:
$>$ Two massless legs and one massive soft leg in the Ariadne frame with respect to the massive parton

$$
\begin{aligned}
p(t) & =p_{0}-2 \kappa x(t)=\frac{m v(t)}{\sqrt{1-v(t)^{2}}} \\
\frac{d x}{d t} & =\frac{1}{\sqrt{1+\frac{m^{2}}{\left(p_{0}-2 \kappa x\right)^{2}}}} \quad x_{\max }=p_{0} / 2 \kappa
\end{aligned}
$$

The differential equation is
non-trivial and not straightforward to compute!!!

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:
$>$ Go to junction rest frame (JRF)

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:
$>$ Go to junction rest frame (JRF)
$>$ Fragment the two lowest energy junction legs (with endpoints q_{01} and q_{02} in example)
$>$ Model these legs as dipole strings using a fictitious other end of the string extending on the other side of the junction

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:

$>$ Go to junction rest frame (JRF)
$>$ Fragment the two lowest energy junction legs (with endpoints q_{01} and q_{02} in example)
$>$ Model these legs as dipole strings using a fictitious other end of the string extending on the other side of the junction

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:

$>$ Go to junction rest frame (JRF)

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:

$>$ Go to junction rest frame (JRF)
$>$ Fragment the two lowest energy junction legs (with endpoints q_{01} and q_{02} in example)
$>$ Model these legs as dipole strings using a fictitious other end of the string extending on the other side of the junction
$>$ Combine partons from last break of two lowest energy strings into a diquark, $q_{3} q_{5}$
$>$ Fragment the last junction leg as dipole with endpoints

$$
q_{3} q_{5}-q_{03}
$$

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:

$>$ Go to junction rest frame (JRF)
$>$ Fragment the two lowest energy junction legs (with endpoints q_{01} and q_{02} in example)
$>$ Model these legs as dipole strings using a fictitious other end of the string extending on the other side of the junction
$>$ Combine partons from last break of two lowest energy strings into a diquark, $q_{3} q_{5}$
$>$ Fragment the last junction leg as dipole with endpoints

$$
q_{3} q_{5}-q_{03}
$$

Junction Fragmentation

How do we fragment these junction systems? How do we get the junction baryon?

Use similar fragmentation method as with dipole strings, fragmenting off on-shell hadrons from each junction-leg string end. Treat each junction leg as half a dipole string.

Standard Procedure:

$>$ Go to junction rest frame (JRF)
$>$ Fragment the two lowest energy junction legs (with endpoints q_{01} and q_{02} in example)
$>$ Model these legs as dipole strings using a fictitious other end of the string extending on the other side of the junction
$>$ Combine partons from last break of two lowest energy strings into a diquark, $q_{3} q_{5}$
$>$ Fragment the last junction leg as dipole with endpoints

$$
q_{3} q_{5}-q_{03}
$$

Modelling particularly important for heavy flavour baryons as they are more sensitive to junction motion

Junction Rest Frame

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
Consider a basic case:
$>$ Two massless legs and one massive soft leg in the Ariadne frame with respect to the massive parton

$$
\begin{aligned}
p(t) & =p_{0}-2 \kappa x(t)=\frac{m v(t)}{\sqrt{1-v(t)^{2}}} \\
\frac{d x}{d t} & =\frac{1}{\sqrt{1+\frac{m^{2}}{\left(p_{0}-2 \kappa x\right)^{2}}}} \quad x_{\max }=p_{0} / 2 \kappa
\end{aligned}
$$

The differential equation is
non-trivial and not straightforward to compute!!!

Implementation

Know JRF given 3-parton configuration, however what about junctions with gluons? Do not want to map the junction motion and fragmentation in a space-time picture, so instead need some "average JRF" to describe the junction motion.

Current procedure finds average "pull" on junction of each leg and looks for 120° frame given the average pulls. Problems in current procedure in PYTHIA: $>$ Convergence failure of iterative procedure for about 10\% of junction systems $>$ Only considers 120° JRF
$>$ No special handling if there is no 120° frame
$>$ Weightings used in averaging procedure not most physically logical

Look at JRFs at different time steps and average over junction velocities.

Implementation

New iterative procedure:

1. Find JRF using the first parton on each junction leg, store the associated velocity, and boost to this frame.
A. If 120° frame does not exist, use rest frame of soft quark as an approximation of the pearl-on-a-string treatment
(should only occur for massive endpoints)

Implementation

New iterative procedure:

1. Find JRF using the first parton on each junction leg, store the associated velocity, and boost to this frame.
2. Time associated with JRF: $p_{\text {small }}=$ smallest absolute 3-momentum
A. If the smallest 3 -momentum is zero, let $p_{\text {small }}$ be the next lowest 3momentum

Implementation

New iterative procedure:

1. Find JRF using the first parton on each junction leg, store the associated velocity, and boost to this frame.
2. Time associated with JRF: $p_{\text {small }}=$ smallest absolute 3-momentum
A. If the smallest 3 -momentum is zero, let $p_{\text {small }}$ be the next lowest 3 momentum
3. Pull vectors: Store 4-momenta scaled down (conserving mass) to have 3-momentum magnitude of $p_{\text {small }}$.
A. If at rest, store the rest frame momentum.

Implementation

New iterative procedure:

1. Find JRF using the first parton on each junction leg, store the associater velocity, and boost to this frame.
2. Time associated with JRF: $p_{\text {small }}=$ smallest absolute 3-momentum
3. Pull vectors: Store 4-momenta scaled down (conserving mass) to have 3 -momentum magnitude of $p_{\text {small }}$.
4. Update momenta:
A. For small leg
i. Step to next parton on leg if possible.

Implementation

New iterative procedure:

1. Find JRF using the first parton on each junction leg, store the associated velocity, and boost to this frame.
2. Time associated with JRF: $p_{\text {small }}=$ smallest absolute 3-momentum
3. Pull vectors: Store 4-momenta scaled down (conserving mass) to have 3 -momentum magnitude of $p_{\text {small }}$.

4. Update momenta

5. Find JRF with new 3-parton configuration and iterate: Repeat steps 2 4 till either:

A. the sum of all $p_{\text {small }}$ exceeds 10 GeV
B. two endpoints are reached
C. parton associated with $p_{\text {small }}$ is a massless endpoint.

Average JRF

Averaging procedure:

Concerned with the junction motion in the time-frame of the hadronisation process
\rightarrow introduce normalisation parameter $p_{\text {norm }}=2 \mathrm{GeV}$ by default

Expect early time pulls to more heavily influence junction motion
\rightarrow use exponential weighting to model time dependence

$$
v_{j u n}=\frac{\sum_{i=1}^{i_{\max }} v_{i}\left(e^{-p_{i-1} / p_{\text {norm }}^{\prime}}-e^{-p_{i} / p_{\text {norm }}^{\prime}}\right)}{1-e^{-p_{i_{\text {max }}} / p_{\text {norm }}^{\prime}}}
$$

The same averaging procedure is used to calculate the average pull on the junction by each leg
\rightarrow used to construct fictitious endpoints for fragmentation

Mathematical subtleties:
$>$ Each $p_{\text {small }}$ is measured in the successive JRFs, therefore transform by γ-factor to lab frame
$>p_{\text {norm }}$ is recalculated to consider γ-factors

$$
p_{\text {norm }}^{\prime}=\sum_{i=1}^{N} \gamma_{i} p_{\text {small }_{i}}+\gamma_{N+1}\left(p_{\text {norm }}-\sum_{i=1}^{N} p_{\text {small }_{i}}\right)
$$

Pearl-on-a-string

How do we implement pearl-on-a-string model? What is the Ariadne frame if we have gluons the junction legs? Instead, we model the soft quark as a gluon with momentum determined by the average JRF.

Fragment $q-q_{\text {pearl }}-q$ string as a $q-g-\bar{q}$ string using existing fragmentation mechanism in PYTHIA

$>$ Fragment the $q-g_{\text {pearl }}-\bar{q}$ string system from the \bar{q} end, reversing the hadron IDs
$>$ Pick up quark and energy from $p_{\text {pearl }}$ for "free" when stepping over junction

[^0]: blue $q \bar{q}$ fluctuation breaks nearby blue string, preventing diquark formation

