
arXiv:0710.3820
CERN-LCGAPP-2007-04

LU TP 07-28
FERMILAB-PUB-07-512-CD-T

October 2007

A Brief Introduction to PYTHIA 8.1

Torbjörn Sjöstrand a,b,1, Stephen Mrenna c, Peter Skands a,c

aCERN/PH, CH–1211 Geneva 23, Switzerland
bDepartment of Theoretical Physics, Lund University,

Sölvegatan 14A, SE-223 62 Lund, Sweden
cFermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract

The Pythia program is a standard tool for the generation of high-energy collisions,
comprising a coherent set of physics models for the evolution from a few-body
hard process to a complex multihadronic final state. It contains a library of hard
processes and models for initial- and final-state parton showers, multiple parton-
parton interactions, beam remnants, string fragmentation and particle decays. It
also has a set of utilities and interfaces to external programs. While previous versions
were written in Fortran, Pythia 8 represents a complete rewrite in C++. The
current release is the first main one after this transition, and does not yet in every
respect replace the old code. It does contain some new physics aspects, on the other
hand, that should make it an attractive option especially for LHC physics studies.

PACS: 13.66.-a, 13.85.-t, 12.38.-t, 12.15.-y, 12.60.-i

Key words: event generators, multiparticle production, parton showers, multiple
interactions, hadronisation

Dedicated to the memory of

Hans-Uno Bengtsson
1953 – 2007

The father of PYTHIA

1 Corresponding author, e-mail: torbjorn@thep.lu.se

Preprint submitted to Elsevier 20 October 2007

NEW VERSION PROGRAM SUMMARY

Manuscript Title:A Brief Introduction to Pythia 8.1
Authors:Torbjörn Sjöstrand, Stephen Mrenna, Peter Skands
Program Title: Pythia 8.1
Journal Reference:
Catalogue identifier:
Licensing provisions: GPL version 2
Programming language: C++
Computer: commodity PCs
Operating systems: Linux; should also work on other systems
RAM: 8 megabytes
Keywords: event generators, multiparticle production, parton showers, multiple in-
teractions, hadronisation
PACS: 13.66.-a, 13.85.-t, 12.38.-t, 12.15.-y, 12.60.-i
Classification: 11.2 Phase Space and Event Simulation
Catalogue identifier of previous version: ADNN v1 0
Journal reference of previous version: T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad,
G. Miu, S. Mrenna and E. Norrbin, Computer Physics Commun. 135 (2001) 238
Does the new version supersede the previous version?: yes, partly

Nature of problem: high-energy collisions between elementary particles normally give
rise to complex final states, with large multiplicities of hadrons, leptons, photons and
neutrinos. The relation between these final states and the underlying physics descrip-
tion is not a simple one, for two main reasons. Firstly, we do not even in principle
have a complete understanding of the physics. Secondly, any analytical approach is
made intractable by the large multiplicities.

Solution method: complete events are generated by Monte Carlo methods. The com-
plexity is mastered by a subdivision of the full problem into a set of simpler separate
tasks. All main aspects of the events are simulated, such as hard-process selection,
initial- and final-state radiation, beam remnants, fragmentation, decays, and so on.
Therefore events should be directly comparable with experimentally observable ones.
The programs can be used to extract physics from comparisons with existing data,
or to study physics at future experiments.

Reasons for the new version: improved and expanded physics models, transition from
Fortran to C++

Summary of revisions: new user interface, transverse-momentum-ordered showers,
interleaving with multiple interactions, and much more

Restrictions: depends on the problem studied

Unusual features: none

Running time: 10–1000 events per second, depending on process studied

2

LONG WRITE-UP

1 Introduction

The development of Jetset [1], containing several of the components that
later were merged with Pythia [2], was begun in 1978. Thus the current
Pythia 6 generator [3,4] is the product of almost thirty years of development,
and some of the code has not been touched in a very long time. New options
have been added, but old ones seldom removed. The basic structure has been
expanded in different directions, well beyond what it was once intended for,
making it rather cumbersome by now.

From the onset, all code has been written in Fortran 77. For the LHC era,
the experimental community has made the decision to move heavy computing
completely to C++. Fortran support may be poor to non-existing, and young
experimenters will not be conversant in Fortran any longer. Therefore it is
logical also to migrate Pythia to C++, and in the process clean up and
modernise various aspects.

A first attempt in this direction was the Pythia 7 project [5]. However, prior-
ity came to be given to the development of a generic administrative structure,
renamed ThePEG [6] and adopted by the Herwig++ [7] group, while the
physics parts of Pythia 7 remained underdeveloped.

Pythia 8 is a clean new start, to provide a successor to Pythia 6. It is a
completely standalone generator, thus not relying on ThePEG or any other
external library. Some optional hooks for links to other programs are provided,
however.

The version presented here is the first operational one in the Pythia 8 series.
As such it is not yet tested and tuned enough to have reached the same level
of maturity as Pythia 6, so we expect the two to coexist for a while. It is
only by an increasing use of the new version that it will mature, however, so
we encourage a critical try-out, and look forward to feedback.

The intention is to release a version in time for comparisons with first LHC
data. Thus some areas, like γp and γγ physics, are not yet addressed. Fur-
ther, some intended processes remain to be implemented. Actually, with the
rise of automatic matrix-element code generation and phase-space sampling,
input of process-level events via the Les Houches Accord (LHA) [8] and with
Les Houches Event Files (LHEF) [9] reduces the need to have an extensive
process library inside Pythia itself. Thus emphasis is more on providing a
good description of subsequent steps of the story, involving elements such as
initial- and final-state parton showers, multiple parton–parton interactions,
string fragmentation, and decays.

The current article provides an introduction to Pythia 8. The programming
aspects are covered in more detail in a set of interlinked HTML (or alterna-

3

tively PHP) pages that comes in the same package as the program files, see
below. Much of the physics aspects are unchanged relative to the Pythia 6.4
manual [4], and so we refer to it and to other physics articles for that. Instead
what we here give is an overview for potential users who already have some
experience with event generators and want to understand how to get going
with Pythia 8.

Section 2 contains an ultra-brief summary of the physics of Pythia 8, with
particular emphasis on aspects that are different relative to Pythia 6. The
program structure (including flow, files, documentation, and a few important
warnings) is described in section 3; summaries of the main user methods,
including the event record and particle classes, in section 4. Section 5 is con-
cerned with the databases of flags, modes, parameters, processes, and particle
data which exist in Pythia 8. Those who wish to link to external programs,
e.g. to gain access to external parton distributions, standard input/output
formats, and much more, will find the relevant information in section 6. A
brief how-to on getting going is then included in section 7. Section 8 rounds
off with an outlook.

2 Physics Summary

This article is not intended to provide a complete description of the physics
content. For this we primarily refer to the Pythia 6 manual [4] and associated
literature. We would like to draw attention to some key points of difference,
however. Further details are available on the HTML/PHP pages in the pro-
gram distribution. Some new physics aspects will eventually be covered in
separate articles.

The physics components are controlled by many parameters. These have been
assigned sensible default values, based on previous experience with Pythia 6
and some first studies with the new code. We look forward to more extensive
tunes by the experimental community, however.

2.1 Hard processes

Currently the program only works with pp, pp, e+e− and µ+µ− incoming
beams. In particular, there is no provision for ep collisions or for incoming
photon beams, neither on their own nor as flux around an electron.

The list of processes currently implemented is summarised further down; it
corresponds to most of the ones in Pythia 6, with the exception of the Su-
persymmetry and Technicolor sectors, which are yet to come. The cross-section
expressions should be identical, but default scale choices have been changed,
so that cross sections may be somewhat different for that reason.

The default parton distribution remains CTEQ 5L, but ones found in the
LhaPdf library [10] can easily be linked. It is now possible to use separate

4

PDF sets for the hard interaction, on one hand, and for the subsequent showers
and multiple interactions, on the other.

2.2 Parton showers

The initial- and final-state algorithms are based on the new p⊥-ordered evo-
lution introduced in Pythia 6.3 [11], while the older mass-ordered ones have
not been implemented. It is now additionally possible to have a branching of
a photon to a fermion pair as part of the final-state evolution.

Already in Pythia 6.3 the initial-state evolution and the multiple interactions
were interleaved into one common decreasing p⊥ sequence. Now also the final-
state evolution is interleaved with the other two. In this context, some of that
final-state radiation gets to be associated with dipoles stretched between a
final-state parton and the “hole” left by an initial-state one, which therefore
now can take a recoil. The initial-state-radiation algorithm remains unchanged
in this respect, with recoils always taken by the hard scattering subsystem as
a whole.

2.3 Multiple interactions and beam remnants

The multiple-interactions machinery as such contains the full functionality in-
troduced in Pythia 6.3 [12]. Rescaled parton densities are defined after the
first interaction, that take into account the nature of the previous partons
extracted. Currently there is only one scenario for colour-reconnection in the
final state, in which there is a certain probability for the partons of two sub-
scatterings to have their colours interarranged in a way that reduces the total
string length. (This is intermediate in character between the original strategy
[13] and the more recent ones [14].) The description of beam remnants is based
on the new framework.

In addition to the standard QCD 2 → 2 processes, the possibility of multiple
interactions producing prompt photons, charmonia and bottomonia, low-mass
Drell-Yan pairs, and t-channel γ∗/Z0/W± exchange is now also included.

For dedicated studies of two low-rate processes in coincidence, two hard in-
teractions can now be set in the same event. There are no Sudakov factors
included for these two interactions, similarly to normal events with one hard
interaction.

2.4 Hadronisation

Hadronisation is based solely on the Lund string fragmentation framework
[15]; older alternative descriptions have been left out.

Particle data have been updated in agreement with the 2006 PDG tables
[16]. This also includes a changed content of the scalar meson multiplet. Some
updated charm and bottom decay tables have been obtained from the DELPHI

5

and LHCb collaborations.

The BE32 model for Bose–Einstein effects [17] has been implemented, but is
not on by default.

2.5 Other program components

Standardised procedures have been introduced to link the program to various
external programs for specific tasks, see section 6.

Finally, some of the old jet finders and other analysis routines are made
available. Also included is a utility to generate, display and save simple one-
dimensional histograms.

3 Program Structure

3.1 Program flow

The physics topics that have to come together in a complete event generator
can crudely be subdivided into three stages:

(1) The generation of a “process” that decides the nature of the event. Of-
ten it would be a “hard process”, such as gg → h0 → Z0Z0 → µ+µ−qq,
that is calculated in perturbation theory, but a priori we impose no re-
quirement that a hard scale must be involved. Only a very small set of
partons/particles is defined at this level, so only the main aspects of the
event structure are covered.

(2) The generation of all subsequent activity on the partonic level, involving
initial- and final-state radiation, multiple parton–parton interactions and
the structure of beam remnants. Much of the phenomena are under an
(approximate) perturbative control, but nonperturbative physics aspects
are also important. At the end of this step, a realistic partonic struc-
ture has been obtained, e.g. with broadened jets and an underlying-event
activity.

(3) The hadronisation of this parton configuration, by string fragmentation,
followed by the decays of unstable particles. This part is almost com-
pletely nonperturbative, and so requires extensive modelling and tuning
or, especially for decays, parametrisations of existing data. It is only at
the end of this step that realistic events are available, as they could be
observed by a detector.

This division of tasks is not watertight — parton distributions span and con-
nect the two first steps, to give one example — but it still helps to focus the
discussion.

The structure of the Pythia 8 generator, as illustrated in Fig. 1, is based
on this subdivision. The main class for all user interaction is called Pythia.
It calls on the three classes ProcessLevel, PartonLevel and HadronLevel,

6

The User (≈ Main Program)

Pythia

Info Event process Event event

ProcessLevel

ProcessContainer

PhaseSpace

LHAinit, LHAevnt

ResonanceDecays

PartonLevel

TimeShower

SpaceShower

MultipleInteractions

BeamRemnants

HadronLevel

StringFragmentation

MiniStringFrag...

ParticleDecays

BoseEinstein

BeamParticle SigmaProcess, SigmaTotal

Vec4, Rndm, Hist, Settings, ParticleDataTable, ResonanceWidths, ...

Fig. 1. The relationship between the main classes in Pythia 8. The thick arrows
show the flow of commands to carry out different physics tasks, whereas the thinner
show the flow of information between the tasks. The bottom box contains common
utilities that may be used anywhere. Obviously the picture is strongly simplified.

corresponding to points 1, 2 and 3 above. Each of these, in their turn, call on
further classes that perform the separate kinds of physics tasks.

Information is flowing between the different program elements in various ways,
the most important being the event record, represented by the Event class.
Actually, there are two objects of this class, one called process, that only
covers the few partons of the “hard” process of point 1 above (i.e., containing
information corresponding to what might be termed the “matrix element”
level), and another called event, that covers the full story from the incoming
beams to the final hadrons. A small Info class keeps track of useful one-of-a-
kind information, such as kinematical variables of the hard process.

There are also two incoming BeamParticles, that keep track of the partonic
content left in the beams after a number of interactions and initial-state radi-

7

ations, and rescales parton distributions accordingly.

The process library, as well as parametrisations of total, elastic and diffractive
cross sections, are used both by the hard-process selection machinery and the
multiple-interactions one.

The Settings database keeps track of all integer, double, boolean and string
variables that can be changed by the user to steer the performance of Pythia,
except that ParticleDataTable is its own separate database.

Finally, a number of utilities can be used just about anywhere, for Lorentz
four-vectors, random numbers, jet finding and simple histograms, and for a
number of other “minor” tasks.

Orthogonally to the subdivision above, there is another, more technical clas-
sification, whereby the user interaction with the generator occurs in three
phases:

• Initialisation, where the tasks to be performed are specified.
• Generation of individual events (the “event loop”).
• Finishing, where final statistics is made available.

Again the subdivision (and orthogonality) is not strict, with many utilities
and tasks stretching across the borders, and with no finishing step required
for many aspects. Nevertheless, as a rule, these three phases are represented
by different methods inside the class of a specific physics task.

3.2 Program files and documentation

The code is subdivided into a set of files, mainly by physics task. Each file
typically contains one main class, but often with a few related helper classes
that are not used elsewhere in the program. Normally the files come in pairs.

(1) A header file, .h in the include subdirectory, where the public interface
of the class is declared, and inline methods are defined.

(2) A source code file, .cc in the src subdirectory, where the lengthier meth-
ods are implemented.

During compilation, related dependency files, .d, and compiled code, .o are
created in the tmp subdirectory.

In part the .xml documentation files in the xmldoc subdirectory have match-
ing names, but the match is broken by the desire to group topics more by
user interaction than internal operation. These files contain information on
all settings and particle data, but not in a convenient-to-read format. Instead
they are translated into a corresponding set of .html files in the htmldoc sub-
directory and a set of .php files in phpdoc. The former set can easily be read if
you open the htmldoc/Welcome.html file in your favourite web browser, but
offers no interactivity. The latter set must be installed under a webserver (like
a homepage) to function properly, and then provides a simple Graphical User
Interface if you open the phpdoc/Welcome.php file in a web browser.

8

For output to the HepMC event record format [18], an interface is provided in
the hepmcinterface subdirectory. There are also interfaces to allow parton
distribution functions to be used from the LhaPdf library [10] and hard
processes from external programs.

The installation procedure is described in a README file; it involves running a
configure script, whereafter an ordinary Makefile is used. The former should
be invoked with command-line arguments (or be edited) to provide the path
to the HepMC library if this is going to be used. Compiled libraries are put
in the lib subdirectory. Default is to build archive libraries, but optionally
also shared-object ones can be built. The standard setup is intended for Linux
systems, but a simplified alternative is provided for Windows users.

Finally, some examples of main programs, along with input files, or “cards”, for
them, are found in the examples subdirectory. This directory contains its own
configure script and Makefile which will allow you to build executables, see
the examples/README file. As above, command-line arguments or brute-force
editing allows you to set the LhaPdf and Pythia 6.4 paths, if so required.
The executables are placed in the bin directory, but with links from examples.

3.3 Important warnings

Playing with the files in the examples subdirectory is encouraged, to famil-
iarise oneself with the program. Modifying the configure files may be re-
quired during installation. For the rest, files should not be modified, at least
not without careful consideration of consequences.

In particular, the .xml files are set read-only, and should not be tampered with.
Interspersed in them, there are lines beginning with <flag, <mode, <parm,
<word, <particle, <channel, or <a. They contain instructions from which
Settings and ParticleDataTable build up their respective databases of user-
accessible variables, see further below. Any stupid changes here will cause
difficult-to-track errors!

Further, sometimes you will see two question marks, “??”, in the text or code.
This is for internal usage, to indicate loose ends or preliminary thoughts.
Please disregard.

4 Main Program and Event Information

4.1 The Pythia class

The Pythia class is the main means of communication between the user and
the event-generation process. We here present the key methods for the user to
call, ordered by context.

Firstly, at the top of the main program, the proper header file must be in-
cluded:

9

#include "Pythia.h"

To simplify typing, it also makes sense to declare
using namespace Pythia8;

Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;

In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);

for changing a single variable, and
pythia.readFile(fileName);

for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);

lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);

is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);

assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);

assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();

will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

after the init(...) call will be ignored (unless methods are used to force
a partial or complete re-initialisation). By contrast, the particle properties
database is queried all the time, and so a later change would take effect im-
mediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However,
all the information on how this should be done has already been specified.
Therefore only a command

pythia.next();

is required to generate the next event. This method would be located inside
an event loop, where a required number of events are to be generated.

The key output of the pythia.next() command is the event record found in
pythia.event, see below. A process-level summary of the event is stored in
pythia.process.

When problems are encountered, in init(...) or next(), they can be as-
signed one of three degrees of severity. Abort is the highest. In that case the
call could not complete its tasks, and returns the value false. If this happens
in init(...) it is then not possible to generate any events at all. If it hap-
pens in next() only the current event must be skipped. In a few cases the
abort may be predictable and desirable, e.g. when a file of LHA events comes
to an end. Errors are less severe, and the program can usually work around
them, e.g. by backing up one step and trying again. Should that not succeed,
an abort may result. Warnings are of informative character only, and do not
require any corrective actions (except, in the longer term, to find more reliable
algorithms).

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics, both on cross sections for the subprocesses generated
and on the number of aborts, errors and warnings issued.

4.2 The event record

The Event class for event records is not much more than a wrapper for a
vector of Particles. This vector can expand to fit the event size. The index
operator is overloaded, so that event[i] corresponds to the i’th particle of
an Event object called event. For instance, given that the PDG identity code
[16] of a particle is provided by the id() method, event[i].id() returns the
identity of the i’th particle.

Line 0 is used to represent the event as a whole, with its total four-momentum
and invariant mass, but does not form part of the event history, and only
contains redundant information. When you translate to another event-record
format where the first particle is assigned index 1, such as HepMC, this line
should therefore be dropped so as to keep the rest of the indices synchronised.
It is only with lines 1 and 2, which contain the two incoming beams, that the

11

history tracing begins. That way unassigned mother and daughter indices can
be put 0 without ambiguity.

In this section, first the Particle methods are surveyed, and then the further
aspects of the event record.

4.2.1 The particle

A Particle corresponds to one entry/slot/line in the event record. Its proper-
ties therefore mix ones belonging to a particle-as-such, like its identity code or
four-momentum, and ones related to the event-as-a-whole, like which mother
it has.

The following properties are stored for each particle, listed by the member
functions you can use to extract the information:

• id() : the identity of a particle, according to the PDG particle codes.
• status() : status code. The full set of codes provides information on where

and why a given particle was produced. The key feature is that a particle
is assigned a positive status code when it is created, which then is negated
if later it branches into other particles. The mechanism of this branching
can be inferred from the status code of the daughters. Thus, at any given
stage of the event-generation process, the current final state consists of the
particles with positive status code.

• mother1(), mother2() : the indices in the event record where the first and
last mothers are stored, if any. A few different cases are possible, to allow for
one or many mothers. The motherList(i) method (see below) can return
a vector with all the mother indices, based on this info.

• daughter1(), daughter2() : the indices in the event record where the first
and last daughters are stored, if any. A few different cases are possible, to
allow for one or many daughters. The daughterList(i) method (see below)
can return a vector with all the daughter indices, based on this info.

• col(), acol() : the colour and anticolour tags, LHA style.
• px(), py(), pz(), e() : the particle four-momentum components (in GeV,

with c = 1), alternatively extracted as a Vec4 p().
• m() : the particle mass (in GeV).
• scale() : the scale at which a parton was produced (in GeV); model-specific

but relevant in the processing of an event.
• xProd(), yProd(), zProd(), tProd() : the production vertex coordi-

nates (in mm or mm/c), alternatively extracted as a Vec4 vProd().
• tau() : the proper lifetime (in mm/c).

The same method names, with a value inserted between the brackets, set these
quantities.

In addition, a number of derived quantities can easily be obtained, but cannot
be set, such as:

• isFinal() : true for a remaining particle, i.e. one with positive status code,

12

else false.
• pT(), pT2() : (squared) transverse momentum.
• mT(), mT2() : (squared) transverse mass.
• pAbs(), pAbs2() : (squared) three-momentum magnitude.
• theta(), phi() : polar and azimuthal angle (in radians).
• y(), eta() : rapidity and pseudorapidity.
• xDec(), yDec(), zDec(), tDec() : the decay vertex coordinates, assum-

ing free-streaming propagation, alternatively extracted as a Vec4 vDec().

Each Particle contains a pointer to the respective ParticleDataEntry ob-
ject in the particle data tables. This pointer gives access to properties of the
particle species as such. It is there mainly for convenience, and should be
thrown if an event is written to disk, to avoid any problems of object persis-
tency. This pointer is used by member functions such as:

• name() : the name of the particle, as a string.
• spinType() : 2s + 1, or 0 where undefined spin.
• charge(), chargeType() : charge, and three times it to make an integer.
• isCharged(), isNeutral() : bools for charged or not.
• colType() : 0 for colour singlets, 1 for triplets, −1 for antitriplets and 2 for

octets.
• m0() : the nominal mass of the particle species.

4.2.2 Other methods in the event record

While the Particle vector is the key component of an Event, a few further
methods are available. The event size can be found with size(), i.e. valid
particles are stored in the range 0 ≤i< event.size().

A listing of the whole event is obtained with list(). The basic identity, status,
mother, daughter, colour, four-momentum and mass data are always given, but
optional arguments can be set to provide further information, on the complete
lists of mothers and daughters, and on production vertices.

The user would normally be concerned with the Event object that is a public
member event of the Pythia class. Thus pythia.event[i].id() would be
used to return the identity of the i’th particle, and pythia.event.size() to
give the size of the event record.

A Pythia object contains a second event record for the hard process alone,
similar to the LHA process specification, called process. This record is used
as input for the generation of the complete event. Thus one may e.g. call either
pythia.process.list() or pythia.event.list(). To distinguish those two
rapidly at visual inspection, the “Pythia Event Listing” header is printed out
differently, adding either “(hard process)” or “(complete event)”.

There are also a few methods with an individual particle index i as input,
but requiring some search operations in the event record, and therefore not
possible to define as methods of the Particle class. The most important ones

13

are motherList(i), daughterList(i) and sisterList(i). These return a
vector<int> containing a list of all the mothers, daughters or sisters of a
particle. This list may be empty or arbitrarily large, and is given in ascending
order.

One data member in an Event object is used to keep track of the largest col()
or acol() tag set so far, so that new ones do not clash.

The event record also contains two further sets of vectors. These are intended
for the expert user only, so only a few words on each. The first is a vector
of junctions, i.e. vertices where three string pieces meet. This list is often
empty or else contains only a very few per event. The second is a storage
area for parton indices, classified by subsystem. Such information is needed to
interleave multiple interactions, initial-state showers, final-state showers and
beam remnants. It can also be used in the hadronisation.

4.3 Other event information

A set of one-of-a-kind pieces of event information is stored in the info object
(an instance of the class Info) in the Pythia class. This is mainly intended for
processes generated internally, but some of the information is also available
for external processes.

You can use pythia.info.method() to extract e.g. the following information:

• list() : list some information on the current event.
• eCM(), s() : the cm energy and its square.
• name(), code() : the name and code of the subprocess.
• id1(), id2() : the identities of the two partons coming in to the hard

subprocess.
• x1(), x2() : x fractions of the two partons coming in to the hard subpro-

cess.
• pdf1(), pdf2(), QFac(), Q2Fac() : parton densities x fi(x, Q2) evalu-

ated for the two incoming partons, and the associated factorisation scale Q
and its square.

• mHat(), sHat(), tHat(), uHat() : the invariant mass of the hard sub-
process and the Mandelstam variables for 2 → 2 processes.

• pTHat(), thetaHat() : transverse momentum and polar scattering angle
of the hard subprocess for 2 → 2 processes.

• alphaS(), alphaEM(), QRen(), Q2Ren() : αs and αem values for the hard
process, and the associated renormalisation scale Q and its square.

• nTried(), nAccepted(), sigmaGen(), sigmaErr() : the number of trial
and accepted events, and the resulting estimated cross section and estimated
statistical error, in units of mb, summed over the included processes.

In other classes there are also methods that can be called to do a sphericity
or thrust analysis or search for jets with a clustering or simple cone jet finder.
These take the event record as input.

14

5 Databases

Inevitably one wants to be able to modify the default behaviour of a generator.
Currently there are two Pythia 8 databases with modifiable values. One deals
with general settings, the other specifically with particle data.

The key method to set a new value is
pythia.readString(string);

The typical form of a string is
"variable = value"

where the equal sign is optional and the variable begins with a letter for
settings and a digit for particle data. A string not beginning with either is
considered as a comment and ignored. Therefore inserting an initial !, #, $, %,
or another such character, is a good way to comment out a command. For non-
commented strings, the match of the name to the database is case-insensitive.
Strings that do begin with a letter or digit and still are not recognised cause
a warning to be issued, unless a second argument false is used in the call.
Any further text after the value is ignored, so the rest of the string can be
used for any comments. For variables with an allowed range, values below the
minimum or above the maximum are set at the respective border. For bool

values, the following notation may be used interchangeably: true = on = yes

= ok = 1. Everything else gives false (including but not limited to false,
off, no and 0).

The readString(...) method is convenient for changing one or two settings,
but becomes cumbersome for more extensive modifications. In addition, a
recompilation and relinking of the main program is necessary for any change
of values. Alternatively, the changes can therefore be collected in a file, for
historical reasons often called a “card file”, where each line is a character
string defined in the same manner as above (without quotation marks). The
whole file can then be read and processed with a command

pythia.readFile(fileName);

As above, comments can be freely interspersed.

5.1 Settings

We distinguish four kinds of user-modifiable variables, by the way they have
to be stored:

(1) A Flag is an on/off switch, and is stored as a bool.
(2) A Mode corresponds to an enumeration of separate options, and is stored

as an int.
(3) A Parm — short for parameter — takes a continuum of values, and is

stored as a double.
(4) A Word is a text string (with no embedded blanks) and is stored as as a

string.

15

Collectively the four above kinds of variables are called settings. Not surpris-
ingly, the class that stores them is called Settings.

Each variable stored in Settings is associated with a few pieces of information.
These are:

• The variable name, of the form class:name (or file:name, or task:name,
usually these agree), e.g. TimeShower:pTmin.

• The default value, set in the original declaration, and intended to represent
a reasonable choice. This value is not user modifiable.

• The current value. During construction of the Settings object, this value is
set equal to the default value. It can subsequently be modified, e.g. by the
pythia.readString() or pythia.readFile() methods discussed above.
During the pythia.init() initialisation this value will be stored as a local
copy in the class(es) where it is used, and thereby also control the subsequent
generation.

• An allowed range of values, represented by meaningful minimum and max-
imum values. This has no sense for a flag or a word, is usually rather well-
defined for a mode, but less so for a parameter. Either of the minimum and
maximum may be left free, giving an open-ended range. Often the allowed
range exaggerates the uncertainty in our current knowledge, so as not to re-
strict too much what the user can do. All the same, this information should
not be modified by the user.

Technically, the Settings class is implemented with the help of four separate
maps, one for each kind of variable, with the name used as key. The default
values are taken from the .xml files in the xmldoc subdirectory. The Settings
class is purely static, i.e. exists only as one global copy, that you can interact
with directly by Settings::command(argument). However, a settings ob-
ject is a public member of the Pythia class, so an alternative notation would
be pythia.settings.command(argument). As already mentioned, for input
the pythia.readString(...) method is to be preferred, since it also can
handle particle data. A typical example would be

pythia.readString("TimeShower:pTmin = 1.0");

You may obtain a listing of all variables in the database by calling
pythia.settings.listAll();

The listing is strictly alphabetical, which at least means that names in the
same area are kept together, but otherwise may not be so well-structured:
important and unimportant ones will appear mixed. A useful alternative is

pythia.settings.listChanged();

which will only print out a list of those variables that differ from their defaults.

5.2 Processes

All internal processes available in Pythia 8 can be switched on and off via
the ordinary settings machinery just discussed, using flags of the generic type
ProcessGroup:ProcessName. A complete list of processes currently imple-

16

mented is given in Table 1. By default all processes are off. A whole group
can be turned on by a ProcessGroup:all = on command, then overriding
the individual flags.

Note that processes in the SoftQCD group are of a kind that cannot be input
via the LHA, while essentially all other kinds could.

Each process is assigned an integer code. This code is not used in the internal
administration of events; it is only intended to allow a simpler user separation
of different processes. Also the process name is available, as a string.

For many processes it makes sense to apply phase space cuts. The ones cur-
rently available (in the Settings database) in particular include

• PhaseSpace:mHatMin, PhaseSpace:mHatMax : the range of invariant masses
of the scattering process.

• PhaseSpace:pTHatMin, PhaseSpace:pTHatMax : the range of transverse
momenta in the rest frame of the process for 2 → 2 and 2 → 3 processes
(for each of the products).

In addition, for any resonance with a Breit-Wigner mass distribution, the
allowed mass range of that particle species is taken into account, both for 2 →

1, 2 → 2 and 2 → 3 processes, thereby providing a further cut possibility. Note
that the SoftQCD processes do not use any cuts but generate their respective
cross sections in full.

5.3 Particle data

The following particle properties are stored in the ParticleDataTable class
for a given PDG particle identity code id, here presented by the method used
to access this property:

• name(id) : particle and antiparticle names are stored separately, the sign
of id determines which of the two is returned, with “void” used to indicate
the absence of an antiparticle.

• hasAnti(id) : bool whether a distinct antiparticle exists or not.
• spinType(id) : 2s + 1 for particles with defined spin, else 0.
• chargeType(id) : three times the charge (to make it an integer); can also

be read as a double charge(id) = chargeType(id)/3.
• colType(id) : the colour type, with 0 uncoloured, 1 triplet, −1 antitriplet

and 2 octet.
• m0(id) : the nominal mass m0 (in GeV).
• mWidth(id) : the width Γ of the Breit-Wigner mass distribution (in GeV).
• mMin(id), mMax(id) : the allowed mass range generated by the Breit-

Wigner, mmin < m < mmax (in GeV).
• tau0(id) : the nominal proper lifetime τ0 (in mm/c).
• constituentMass(id) : the constituent mass for a quark, hardcoded as

mu = md = 0.325, ms = 0.50, mc = 1.60 and mb = 5.0 GeV, for a diquark
the sum of quark constituent masses, and for everything else the same as

17

Table 1
Currently implemented processes, complete with respect to groups, but with some
individual processes missing for lack of space (represented by “...”). In the names,
a “2” separates initial and final state, an “(s:X)”, “(t:X)” or “(l:X)” occasionally
appends info on an s- or t-channel- or loop-exchanged particle X.

ProcessGroup ProcessName

SoftQCD minBias,elastic, singleDiffractive,

doubleDiffractive

HardQCD gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2gg,

qqbar2qqbarNew, gg2ccbar, qqbar2ccbar,

gg2bbbar, qqbar2bbbar

PromptPhoton qg2qgamma, qqbar2ggamma, gg2ggamma,

ffbar2gammagamma, gg2gammagamma

WeakBosonExchange ff2ff(t:gmZ), ff2ff(t:W)

WeakSingleBoson ffbar2gmZ, ffbar2W, ffbar2ffbar(s:gm)

WeakDoubleBoson ffbar2gmZgmZ, ffbar2ZW, ffbar2WW

WeakBosonAndParton qqbar2gmZg, qg2gmZq, ffbar2gmZgm, fgm2gmZf

qqbar2Wg, qg2Wq, ffbar2Wgm, fgm2Wf

Charmonium gg2QQbar[3S1(1)]g, qg2QQbar[3PJ(8)]q, ...

Bottomonium gg2QQbar[3S1(1)]g, gg2QQbar[3P2(1)]g, ...

Top gg2ttbar, qqbar2ttbar, qq2tq(t:W),

ffbar2ttbar(s:gmZ), ffbar2tqbar(s:W)

FourthBottom, FourthTop, FourthPair (fourth generation)

HiggsSM ffbar2H, gg2H, ffbar2HZ, ff2Hff(t:WW), ...

HiggsBSM h, H and A as above, charged Higgs, pairs

SUSY qqbar2chi0chi0 (not yet completed)

NewGaugeBoson ffbar2gmZZprime, ffbar2Wprime, ffbar2R0

LeftRightSymmmetry ffbar2ZR, ffbar2WR, ffbar2HLHL, ...

LeptoQuark ql2LQ, qg2LQl, gg2LQLQbar, qqbar2LQLQbar

ExcitedFermion dg2dStar, qq2uStarq, qqbar2muStarmu, ...

ExtraDimensionsG* gg2G*, qqbar2G*, ...

18

the ordinary mass.
• mRun(id, massScale) : the running mass for quarks, else the same as the

nominal mass.
• mayDecay(id) : a flag telling whether a particle species may decay or not,

offering the main user switch (whether a given particle of this kind then
actually will decay also depends on other flags in the ParticleDecays class).

Similar methods can also be used to set most of these properties.

Each particle kind in the ParticleDataTable also has a a vector of DecayChannels
associated with it. The following properties are stored for each decay channel:

• onMode() : whether a channel is on (1) or off (0), or on only for particles
(2) or antiparticles (3).

• bRatio() : the branching ratio.
• meMode() : the mode of processing this channel, possibly with matrix-

element information; 0 gives isotropic phase space.
• multiplicity() : the number of decay products in a channel, at most 8.
• product(i) : a list of the decay products, 8 products 0 ≤i< 8, with trailing

unused ones set to 0.

The original particle data and decay table is read in from the ParticleData.xml
file.

The ParticleDataTable class is purely static, i.e. exists as one global copy,
that you can interact directly with by ParticleDataTable::command(argument).
However, a particleData object of the ParticleDataTable class is a public
member of the Pythia class, which offers an alternatively notation. As al-
ready mentioned, for input the pythia.readString(string) method is to be
preferred, since it also can handle settings.

It is only the form of the string that needs to be specified slightly differently
than for settings, as

id:property = value.
The id part is the standard PDG particle code, i.e. a number, and property

is one of the ones already described above, with a few minor differences: name,
antiName, spinType, chargeType, colType, m0, mWidth, mMin, mMax, tau0,
mayDecay, isResonance, isVisible, doExternalDecay, and doForceWidth.
As before, several commands can be stored as separate lines in a file, say

111:name = piZero ! normal notation pi0

3122:mayDecay = false ! Lambda0 stable

431:tau0 = 0.15 ! D s proper lifetime

and then be read with pythia.readFile(fileName).

For major changes of the properties of a particle, the above one-at-a-time
changes can become rather cumbersome. Therefore a few extended input for-
mats are available, where a whole set of properties can be given after the equal
sign, separated by blanks and/or by commas. One line like

id:all = name antiName spinType chargeType colType m0 mWidth

19

mMin mMax tau0

replaces all the current information on the particle itself, but keeps its decay
channels, if any, while using new instead of all also removes any previous de-
cay channels. (The flags mayDecay, isResonance, isVisible, doExternalDecay,
and doForceWidth are in either case reset to their defaults and would have to
be changed separately.)

In order to change the decay data, the decay channel number needs to be
given right after the particle number, i.e. the command form becomes

id:channel:property = value.
Recognised properties are onMode, bRatio, meMode and products, where the
latter expects a list of all the decay products, separated by blanks, up until
the end of the line, or until a non-number is encountered. The property all

will replace all the information on the channel, i.e.
id:channel:all = onMode bRatio meMode products

To add a new channel at the end, use
id:addChannel = onMode bRatio meMode products

To remove all existing channels and force decays into one new channel, use
id:oneChannel = onMode bRatio meMode products

A first oneChannel command could be followed by several subsequent addChannel
ones, to build up a completely new decay table for an existing particle.
It is currently not possible to remove a channel selectively, but setting its
branching ratio vanishing is as effective.

Often one may want to allow only a specific subset of decay channels for a
particle. This can be achieved e.g. by a repeated use of id:channel:onMode
commands, but there also is a set of commands that initiates a loop over all
decay channels and allows a matching to be carried out. The id:onMode com-
mand can switch on or off all channels. The id:onIfAny and id:offIfAny

will switch on/off all channels that contain any of the enumerated particles.
For instance

23:onMode = off

23:onIfAny = 1 2 3 4 5

first switches off all Z0 decay modes and then switches back on any that
contains one of the five lighter quarks. Other methods are id:onIfAll and
id:offIfAll, and id:onIfMatch and id:offIfMatch, where all the enumer-
ated products must be present for a decay channel to be switched on/off. The
difference is that the former two allow further non-matched particles in a de-
cay channel while the latter two do not. There are also further methods to
switch on channels selectively either for the particle or for the antiparticle.

When a particle is to be decayed, the branching ratios of the allowed channels
are always rescaled to unit sum. There are also methods for by-hand rescaling
of branching ratios.

You may obtain a listing of all the particle data by calling
pythia.particleData.listAll().

20

The listing is by increasing id number. To list only those particles that have
been changed, instead use

pythia.particleData.listChanged().
To list only one specific particle id, use list(id). It is also possible to list

a vector<int> of id’s.

6 Links to external programs

While Pythia 8 itself is self-contained and can be run without reference to
any external library, often one does want to make use of other programs that
are specialised on some aspect of the generation process. The HTML/PHP
documentation accompanying the code contains full information on how the
different links should be set up. Here the purpose is mainly to point out the
possibilities that exist.

6.1 The Les Houches interface

The Les Houches Accord for user processes (LHA) [8] is the standard way to
input parton-level information from a matrix-elements-based generator into
Pythia. The conventions for which information should be stored has been
defined in a Fortran context, as two commonblocks. Here a C++ equivalent
is defined, as two separate classes.

The LHAinit and LHAevnt classes are base classes, containing reading and
printout methods, plus a pure virtual method set() each. Derived classes
have to provide these two virtual methods to do the actual work. Currently
the only examples are for reading information at runtime from the respective
Fortran commonblock or for reading it from a Les Houches Event File (LHEF)
[9].

The LHAinit class stores information equivalent to the /HEPRUP/ common-
block, as required to initialise the event-generation chain. The LHAevnt class
stores information equivalent to the /HEPEUP/ commonblock, as required to
hand in the next parton-level configuration for complete event generation.

The LHAinitFortran and LHAevntFortran are two derived classes, contain-
ing set() members that read the respective LHA Fortran commonblock for
initialisation and event information. This can be used for a runtime link to a
Fortran library. As an example, an interface is provided to the Pythia 6.4
process library.

The LHAinitLHEF and LHAevntLHEF are two other derived classes, that can
read a file with initialisation and event information, assuming that the file has
been written in the LHEF format. You do not need to declare these classes
yourself, since a shortcut is provided by the pythia.init(fileName) com-
mand.

If you create LHAinit and LHAevnt objects yourself, pointers to those should

21

be handed in with the init(...) call, then of the form pythia.init(LHAinit*,

LHAevnt*).

6.2 Semi-internal processes and resonances

When you implement new processes via the Les Houches Accord you do all
flavour, colour and phase-space selection externally, before your process-level
events are input for further processing by Pythia. However, it is also possible
to implement a new process in exactly the same way as the internal Pythia

ones, thus making use of the internal phase-space selection machinery to sam-
ple an externally provided cross-section expression.

The matrix-element information has to be put in a new class that derives from
one of the existing classes, Sigma1Process for 2 → 1 processes, Sigma2Process
for 2 → 2 ones, and Sigma3Process for 2 → 3 ones, which in their turn de-
rive from the SigmaProcess base class. Note that Pythia is rather good at
handling the phase space of 2 → 1 and 2 → 2 processes, is more primitive
for 2 → 3 ones and does not at all address higher multiplicities. This limits
the set of processes that you can implement in this framework. The produced
particles may be resonances, however, so it is possible to end up with bigger
”final” multiplicities through sequential decays, and to include further matrix-
element weighting in those decays.

In your new class you have to implement a number of methods. Chief among
them is one to return the matrix-element weight for an already specified kine-
matics configuration and another one to set up the final-state flavours and
colour flow of the process. Further methods exist, some of more informative
character, such as providing the name of the process. Should you actually go
ahead, it is strongly recommended to shop around for a similar process that
has already been implemented, and to use that existing code as a template.

Once a class has been written, a pointer of type SigmaProcess* to a new

instance of your class needs to be created in the main program, and handed in
with the pythia.setSigmaPtr(...) method. From there on the process will
be handled on equal footing with internally implemented processes.

If your new process introduces a new particle you have to add it and its
decay channels to the particle database, as already explained. This only allows
for a fixed width and fixed branching ratios, however, with only some minor
generalisations. To obtain a dynamical calculation, where the width and the
branching ratios can vary as a function of the currently chosen mass, you
must also create a new class for it that derives from the ResonanceWidths

class. In it you have to implement a method that returns the partial width
for each of the possible decay channels. The structure is simpler than for the
SigmaProcess case, but again it may be convenient to use a similar existing
resonance as a template. You then hand in a pointer to an instance of this
new class with the pythia.setResonancePtr(...) method.

22

6.3 Parton distribution functions

The PDF class is the base class for all parton distribution function parametri-
sations, from which specific PDF classes are derived. Currently the selection
of sets that comes with the program is very limited; for protons only CTEQ
5L (default) and GRV 94L are available. However, a built-in interface to the
LhaPdf library [10] allows a much broader selection, if only LhaPdf is linked
together with Pythia.

Should this not be enough, it is possible to write your own class derived from
the PDF base class, wherein you implement the xfUpdate(...) member to
do the actual updating of PDFs. Once you have created two distinct PDF

objects, pdfA and pdfB, you should supply pointers to these as arguments in
a pythia.setPDFPtr(pdfA*, pdfB*) call.

A word of warning: to switch to a new PDF set implies that a complete
retuning of the generator may be required, since the underlying-event activity
from multiple interactions and parton showers is changed. There is an option
that allows a replacement of the PDF for the hard process only, so that this
is not required. Inconsistent but convenient.

6.4 External decay packages

While Pythia is set up to handle any particle decays, decay products are of-
ten (but not always) distributed isotropically in phase space, i.e. polarisation
effects and nontrivial matrix elements usually are neglected in Pythia. Espe-
cially for the τ lepton and for some B mesons it is therefore common practice
to rely on dedicated decay packages [20,21].

To this end, DecayHandler is a base class for the external handling of decays.
The user-written derived class is called if a pointer to it has been given with the
pythia.setDecayPtr(DecayHandler*, vector<int>) method. The second
argument to this method should contain the id codes of all the particles that
should be decayed by the external program. It is up to the author of the
derived class to send different of these particles on to separate packages, if so
desired.

The decay(...) method in the user-written DecayHandler class should do
the decay, or return false if it fails. In the latter case Pythia will try to
do the decay itself. Thus one may implement some decay channels externally
and leave the rest for Pythia, assuming the Pythia decay tables are adjusted
accordingly.

6.5 User hooks

Sometimes it may be convenient to step in during the generation process:
to modify the built-in cross sections, to veto undesirable events or simply
to collect statistics at various stages of the evolution. There is a base class

23

UserHooks that gives you this access at a few selected places. This class in
itself does nothing; the idea is that you should write your own derived class for
your task. A few very simple derived classes come with the program, mainly
as illustration.

There are four distinct sets of routines. Ordered by increasing complexity,
rather than by their appearance in the event-generation sequence, they are:

• Ones that gives you access to the event record in between the process-level
and parton-level steps, or in between the parton-level and hadron-level ones.
You can study the event record and decide whether to veto this event.

• Ones that allow you to set a scale at which the combined multiple-interactions,
initial-state and final-state parton-shower downwards evolution in p⊥ is tem-
porarily interrupted, so the event can be studied and either vetoed or allowed
to continue the evolution.

• Similar ones that instead gives you access after the first few parton-shower
branchings of the hardest subprocess.

• Ones that gives you access to the properties of the trial hard process, so that
you can modify the internal Pythia cross section by your own correction
factors.

6.6 Random-number generators

RndmEngine is a base class for the external handling of random-number gener-
ation. The user-written derived class is called if a pointer to it has been handed
in with the pythia.setRndmEnginePtr(RndmEngine*) method. Since the de-
fault Marsaglia-Zaman algorithm is quite good, there is absolutely no physics
reason to replace it, but this may still be required for consistency with other
program elements in big experimental frameworks.

6.7 The HepMC event format

The HepMC event format [18] is a standard format for the storage of events in
several major experiments. The translation from the Pythia 8 Event format
should be done after pythia.next() has generated an event. Therefore there
is no need for a tight linkage, but only to call the
HepMC::I Pythia8::fill next event(pythia.event, hepmcevt)

conversion routine from the main program written by the user. Version 1 of
HepMC makes use of the CLHep library [22] for four-vectors, while version
2 is standalone; this requires some adjustments in the interface code based on
which version is used.

6.8 SUSY parameter input

Pythia 8 does not contain a machinery for calculating masses and couplings of
supersymmetric particles from some small set of input parameters. Instead the
SUSY Les Houches Accord (SLHA) [19] is used to provide this information, as

24

calculated by some external program. You need to supply the name of the file
where the SLHA information is stored, in an appropriate setting, and then the
rest is taken care of automatically. (Or at least will be, once SUSY processes
are implemented.)

6.9 Parton showers

It is possible to replace the existing timelike and/or spacelike showers in the
program by your own. This is truly for experts, since it requires a rather
strict adherence to a wide set of rules. These are described in detail in the
HTML/PHP documentation accompanying the code. The Vincia program
[23] offers a first example of a plug-in of an external (timelike) shower.

7 Getting Going

After you download the pythia8100.tgz (or later) package from the Pythia

webpage,
http://www.thep.lu.se/∼torbjorn/Pythia.html

you can unpack it with tar xvfz pythia8100.tgz, into a new subdirectory
pythia8100. The rest of the installation procedure is described in the README

file in that directory. It is assumed you are on a Linux system; so far there is
hardly any multiplatform support.

After this, the main program is up to the user to write. A worksheet (found
on the webpage) takes you through as step-by-step procedure, and sample
main programs are provided in the examples subdirectory. These programs
are included to serve as inspiration when starting to write your own program,
by illustrating the principles involved.

The information available if you open htmldoc/Welcome.html in your web
browser will help you explore the program possibilities further. If you install
the phpdoc subdirectory under a web server you will also get extra help to build
a file of commands to the Settings and ParticleDataTable machineries, to
steer the execution of your main program.

Such ”cards files” are separate from the main programs proper, so that minor
changes can be made without any recompilation. It is then convenient to
collect in the same place some run parameters, such as the number of events
to generate, that could be used inside the main program. Therefore some such
have been predefined, e.g. Main:numberOfEvents. Whether they actually are
used is up to the author of a main program to decide.

8 Outlook

As already explained in the introduction, Pythia 8.1 is not yet a complete
replacement of Pythia 6.4, but it is getting there, and already contains some
new features not found elsewhere. In many cases the quality of the physics

25

should be comparable between the two versions, but obviously the objective
is that soon Pythia 8 should offer the overall better alternative. This will
occur by further improvements of the existing framework and by the gradual
addition of new features.

Acknowledgements

The support and kind hospitality of the SFT group at CERN is gratefully
acknowledged by TS. Mikhail Kirsanov has developed the configure files, the
makefiles and the interface to HepMC, and made several valuable sugges-
tions. Ben Lloyd has written the PHP webpage framework. Bertrand Bellenot
has provided a simple makefile for Win32/NMAKE. Marc Montull has helped
write the extended Higgs sector. SM and PS are supported by Fermi Research
Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United
States Department of Energy. This work was supported in part by the Euro-
pean Union Marie Curie Research Training Network MCnet under contract
MRTN-CT-2006-035606.

References

[1] T. Sjöstrand, Computer Physics Commun. 27 (1982) 243, 28 (1983) 229, 39

(1986) 347;
T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43 (1987) 367

[2] H.-U. Bengtsson, Computer Physics Commun. 31 (1984) 323;
H.-U. Bengtsson and G. Ingelman, Computer Physics Commun. 34 (1985) 251;
H.-U. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46 (1987) 43;
T. Sjöstrand, Computer Physics Commun. 82 (1994) 74

[3] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E.
Norrbin, Computer Physics Commun. 135 (2001) 238

[4] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 05 (2006) 026 [hep-ph/0603175]

[5] L. Lönnblad, Computer Physics Commun. 118 (1999) 213;
M. Bertini, L. Lönnblad and T. Sjöstrand, Computer Physics Commun. 134

(2001) 365

[6] see webpage http://www.thep.lu.se/ThePEG/

[7] S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B.R. Webber, JHEP 02

(2004) 005;
see webpage http://hepforge.cedar.ac.uk/herwig/

[8] E. Boos et al., in the Proceedings of the Workshop on Physics at TeV Colliders,
Les Houches, France, 21 May - 1 Jun 2001 [hep-ph/0109068]

[9] J. Alwall et al., Computer Physics Comm. 176 (2007) 300

26

[10] M.R. Whalley, D. Bourilkov and R.C. Group, in ‘HERA and the LHC’,
eds. A. De Roeck and H. Jung, CERN-2005-014, p. 575 [hep-ph/0508110]

[11] T. Sjöstrand and P. Skands, Eur. Phys. J C39 (2005) 129

[12] T. Sjöstrand and P. Skands, JHEP 03 (2004) 053

[13] T. Sjöstrand and M. van Zijl, Phys. Rev. D36 (1987) 2019

[14] P. Skands and D. Wicke, Eur. Phys. J. C52 (2007) 133

[15] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rep. 97

(1983) 31

[16] Particle Data Group, W.-M. Yao et al., J. Phys. G33 (2006) 1

[17] L. Lönnblad and T. Sjöstrand, Eur. Phys. J. C2 (1998) 165

[18] M. Dobbs and J.B. Hansen, Computer Physics Comm. 134 (2001) 41

[19] P. Skands et al., JHEP 07 (2004) 036

[20] S. Jadach, Z. Wa̧s, R. Decker and J.H. Kühn, Computer Physics Commun. 76

(1993) 361

[21] D.J. Lange, Nucl. Instrum. Meth. A462 (2001) 152

[22] see webpage http://proj-clhep.web.cern.ch/proj-clhep/

[23] W.T. Giele, D.A. Kosower and P.Z. Skands, arXiv:0707.3652

27

